Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
Quantum Many-Body Systems with Q3
Mathematica(R) package Q3 helps study quantum many-body systems. It provides various tools and utilities for symbolic and numerical calculations to simulate quantum many-body systems.
Fermion
Represents fermionic operators
Majorana
Represents operators for Majorana fermions
Boson
Represents bosonic operators
Heisenberg
Represents operators satisfying the Heisenberg canonical commutation relations
Species involved in the study of quantum many-body systems.
You first need to load the package.
In[1]:=
Needs["QuantumMob`Q3`"]
Let us consider a system of fermions. Choose a symbol, here c, to denote the fermions:
In[4]:=
Let[Fermion,c]
Here is an example of the non-commutative multiplication of fermion operators:
In[3]:=
c[1]**c[2]
Out[3]=
-
c
2
c
1
This returns the
Vacuum
state:
In[4]:=
v1=Ket[]
Out[4]=
|␣〉
In[5]:=
v1//InputForm
Out[5]//InputForm=
Ket[<||>]
The fermion operators act on the state vectors:
In[6]:=
v2=Dagger[c[1]]**Dagger[c[2]]**Ket[]
Out[6]=
|
1
c
1
1
c
2

Hamiltonians are written in terms of Fermion operators.
In[7]:=
op=Q[c[1],c[2]]+tPlusDagger@FockHopping[c[1],c[2]]
Out[7]=
†
c
1
c
1
+t
†
c
1
c
2
+
†
c
2
c
1
+
†
c
2
c
2
Calculate the matrix representation in the computational basis:
In[8]:=
mat=Matrix[op];​​mat//MatrixForm
Out[9]//MatrixForm=
0
0
0
0
0
1
t
0
0
t
1
0
0
0
0
2
​
Now, consider a Boson operator:
In[115]:=
Let[Boson,a]
In[140]:=
op=Hop[a@{1,2,3}];​​op=PlusDagger[op]
Out[141]=
†
a
1
a
2
+
†
a
2
a
1
+
†
a
2
a
3
+
†
a
3
a
2
In[142]:=
ket=Dagger[a[1]]**Ket[]
Out[142]=
|
1
a
1

In[143]:=
op**ket
Out[143]=
|
1
a
2

RelatedGuides
▪
Fermionic Quantum Computation
▪
Quantum Many-Body Systems
▪
Q3: Symbolic Quantum Simulation
RelatedTechNotes
▪
Quantum Information Systems with Q3
▪
Quantum Spin Systems with Q3
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com