Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
Fermion
​
Fermion
refers to a collection of Dirac fermion modes.
​
Details and Options

Examples  
(4)
Basic Examples  
(3)
Fermions are declared as follows
In[1]:=
Let[Fermion,c,Vacuum"Sea"]​​Let[Fermion,d]​​Let[Fermion,f,Spin0,Vacuum"Sea"]
By the above declaration, c[i,j,...] are all bosonic annihilation operators, and Dagger[ci,j,...]] are creation operators.
In[2]:=
c[Down]**c[Up]​​Dagger[c[1,Up]]**Dagger[c[2,Down]]
Out[2]=
-
c
↑
c
↓
Out[2]=
†
c
1,↑
†
c
2,↓
The defining properties of bosonic operators are the canonical commutation relations
In[3]:=
c[Up]**Dagger[c[Up]]+Dagger[c[Up]]**c[Up]1​​c[Up]**c[Up]-c[Up]**c[Up]0​​Dagger[c[Up]]**Dagger[c[Up]]+Dagger[c[Up]]**Dagger[c[Up]]0
Out[3]=
True
Out[3]=
True
Out[3]=
True
These commutators can be conveniently assessed by Commutator[ ] and Anticommutator[ ]
In[4]:=
c[i]**c[j]​​c[i]**Dagger[c[j]]​​Dagger[c[i]**c[j]]​​Anticommutator[c[i],Dagger[c[j]]]
Out[4]=
-
c
j
c
i
Out[4]=
δ
i,j
-
†
c
j
c
i
Out[4]=
-
†
c
i
†
c
j
Out[4]=
δ
i,j
​
In[1]:=
Let[Fermion,c,Vacuum"Sea"]​​Let[Fermion,d]
A list in the Flavor indices of operators are treated specially. It is equivalent to the list of operators
In[2]:=
c[{1,2,3},Up]​​c[{Up,Down}]​​c[{1,2},{Up,Down}]​​c[{1,2},All]
Out[2]=
{
c
1,↑
,
c
2,↑
,
c
3,↑
}
Out[2]=
{
c
↑
,
c
↓
}
Out[2]=
{
c
1,↑
,
c
1,↓
,
c
2,↑
,
c
2,↓
}
Out[2]=
{
c
1,↑
,
c
1,↓
,
c
2,↑
,
c
2,↓
}
The final spin index can be All to have all possible spin components :
In[3]:=
d[All]
Out[3]=
{
d
↑
,
d
↓
}
For c, which has the Sea vacuum, requires another Flavor index; otherwise, All is regarded as a normal symbol.
In[4]:=
c[All]​​c[1,All]
Out[4]=
c
All
Out[4]=
{
c
1,↑
,
c
1,↓
}
In[5]:=
c[{1,2,3},All]
Out[5]=
{
c
1,↑
,
c
1,↓
,
c
2,↑
,
c
2,↓
,
c
3,↑
,
c
3,↓
}
​
The phase convention of Ket involving fermions is such that
†
c
1
†
c
2
†
…c
n
|␣〉=
1
c
1
,
1
c
2
,…,
1
c
n

.
In[1]:=
bs=Basis[c@{1,2}]
Out[1]=

0
c
1
0
c
2
,
0
c
1
1
c
2
,
1
c
1
0
c
2
,
1
c
1
1
c
2

In[2]:=
c[1]**bs
Out[2]=
0,0,
0
c
1
0
c
2
,
0
c
1
1
c
2

In[3]:=
c[2]**bs
Out[3]=
0,
0
c
1
0
c
2
,0,-
1
c
1
0
c
2

In[4]:=
Dagger[c[1]]**bs
Out[4]=

1
c
1
0
c
2
,
1
c
1
1
c
2
,0,0
In[5]:=
Dagger[c[2]]**bs
Out[5]=

0
c
1
1
c
2
,0,-
1
c
1
1
c
2
,0
Scope  
(1)

SeeAlso
Majorana
 
▪
Boson
 
▪
Heisenberg
 
▪
Let
TechNotes
▪
Quantum Many-Body Systems with Q3
▪
Quantum Information Systems with Q3
▪
Quantum Spin Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Q3: Symbolic Quantum Simulation
▪
Quantum Many-Body Systems
▪
Quantum Information Systems
▪
Quantum Spin Systems
RelatedLinks
▪
Mahn
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com