Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
Heisenberg
​
Heisenberg
represents the operators obeying the canonical commutation relations.
​
​
Let
[Heisenberg,a,b,…]
or
Let
[Heisenberg,{a,b,…}]
​ declares the symbols
a,b,…
to be
Heisenberg
canonical operators.
​
Details and Options

Examples  
(2)
Basic Examples  
(2)
Consider pairs of operators that satisfy Heisenberg’s canonical commutation relations.
In[1]:=
Let[Heisenberg,x]
In[2]:=
x[1]​​Canon[x[1]]
Out[2]=
x
1
Out[2]=
c
x
1
They satisfy the Heisenberg canonical commutation relation.
In[3]:=
Commutator[x[1],Canon[x[1]]]
Out[3]=

In[4]:=
x[1]**Canon[x[1]]
Out[4]=
+
c
x
1
x
1
In[5]:=
Dagger[x[1]]
Out[5]=
x
1
In[6]:=
Canon@x[2]**x[1]**Canon[x[1]]**x[2]
Out[6]=

c
x
2
x
2
+
c
x
1
c
x
2
x
2
x
1
In[7]:=
AnyHeisenbergQ@Canon@x[1]​​AnySpeciesQ@Canon@x[1]
Out[7]=
True
Out[7]=
True
In[8]:=
AnySpeciesQ[Canon[q[1]]]​​AnySpeciesQ[q[1]]
Out[8]=
False
Out[8]=
False
​
Consider the state vector.
In[1]:=
in=Ket[x[1]3]
Out[1]=
|
3
x
1

In[2]:=
x[1]**in​​Canon[x[1]]**in
Out[2]=
3
2
|
2
x
1
+
2
|
4
x
1

Out[2]=
-
3
2
|
2
x
1
+
2
|
4
x
1

In[3]:=
Dagger[in]**x[1]
Out[3]=
3
2

2
x
1
|+
2

4
x
1
|
In[4]:=
Dagger[in]**Canon[x[1]]
Out[4]=

3
2

2
x
1
|-
2

4
x
1
|
Compare the above results with the following.
In[5]:=
Let[Boson,a]
In[6]:=
in=Ket[a[1]3]
Out[6]=
|
3
a
1

In[7]:=
X=(a[1]+Dagger[a[1]])/Sqrt[2]​​P=(a[1]-Dagger[a[1]])/(I*Sqrt[2])
Out[7]=
a
1
+
†
a
1
2
Out[7]=
-

a
1
-
†
a
1

2
In[8]:=
X**in​​P**in
Out[8]=
3
2
|
2
a
1
+
2
|
4
a
1

Out[8]=
-
3
2
|
2
a
1
+
2
|
4
a
1

In[9]:=
Dagger[in]**X​​Dagger[in]**P
Out[9]=
3
2

2
a
1
|+
2

4
a
1
|
Out[9]=

3
2

2
a
1
|-
2

4
a
1
|
SeeAlso
Boson
 
▪
Fermion
 
▪
Majorana
TechNotes
▪
Quantum Many-Body Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Q3: Symbolic Quantum Simulation
▪
Quantum Many-Body Systems
▪
Quantum Spin Systems
RelatedLinks
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com