Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
WickEntropy
​
WickEntropy
[grn]
returns the von Neumann entropy of a fermionic Gaussian state characterized by the matrix
grn
of single-particle Green's functions.
​
​
WickEntropy
[
NambuGreen
[{grn,anm}]
or
WickEntropy
[{grn,anm}]
​ considers a fermionic Gaussian state characterized by matrices
grn
and
anm
of normal and anomalous Green's functions.
​
Examples  
(2)
Basic Examples  
(2)
In[1]:=
$n=6;
Generate a statistical ensemble of Wick states. Make sure to normalize each state.
In[2]:=
SeedRandom[362];
In[3]:=
ens=Table[RandomWickState[$n],4]
Out[3]=
WickState
Modes: 6
Prefactor: 1
,WickState
Modes: 6
Prefactor: 1
,WickState
Modes: 6
Prefactor: 1
,WickState
Modes: 6
Prefactor: 1

In[4]:=
Norm/@ens
Out[4]=
{1,1,1,1}
Calculate the average of the Green's functions.
In[5]:=
grn=Mean[WickGreenFunction/@ens]​​grn//ArrayShort
Out[5]=
NambuGreen
Modes: All
Dimensions: {6,6}

Out[5]=

0.478141
-0.0384557+0.0282099
-0.0522505+0.0221816
-0.115205+0.0625819
…
-0.0384557-0.0282099
0.626679
0.0732485+0.0189654
-0.0038312+0.0300497
…
-0.0522505-0.0221816
0.0732485-0.0189654
0.567864
-0.0894801+0.0800685
…
-0.115205-0.0625819
-0.0038312-0.0300497
-0.0894801-0.0800685
0.470713
…
…
…
…
…
…
,
0
0.021475-0.00611407
-0.0514683-0.0120041
0.0054456-0.00921281
…
-0.021475+0.00611407
0
0.0233473-0.067923
-0.00310981-0.00153415
…
0.0514683+0.0120041
-0.0233473+0.067923
0
0.040589+0.0635759
…
-0.0054456+0.00921281
0.00310981+0.00153415
-0.040589-0.0635759
0
…
…
…
…
…
…

In[6]:=
WickEntropy[grn]
Out[6]=
4.94228
​
In[1]:=
$n=6;
Consider a pure Wick state.
In[2]:=
SeedRandom[362];
In[3]:=
ws=RandomWickState[$n]
Out[3]=
WickState
Modes: 6
Prefactor: 1

Calculate the Green's functions.
In[4]:=
full=WickGreenFunction[ws];​​full//ArrayShort
Out[4]=

0.301525
-0.0397476-0.0381598
-0.0510844+0.0846824
-0.221221-0.0323891
…
-0.0397476+0.0381598
0.676175
0.0219312+0.00543513
-0.172542-0.040477
…
-0.0510844-0.0846824
0.0219312-0.00543513
0.579745
-0.0738395-0.0616823
…
-0.221221+0.0323891
-0.172542+0.040477
-0.0738395+0.0616823
0.51448
…
…
…
…
…
…
,
0
-0.0136839+0.0823599
-0.045609-0.027744
0.0274149-0.11059
…
0.0136839-0.0823599
0
0.14+0.00194123
-0.143893+0.10174
…
0.045609+0.027744
-0.14-0.00194123
0
0.0405121+0.237186
…
-0.0274149+0.11059
0.143893-0.10174
-0.0405121-0.237186
0
…
…
…
…
…
…

Consider a mixed state of subsystem consisting of the first half of the fermion modes that results from tracing out the rest modes. The mixed state is characterized by the sub-block of the full matrix of Green's functions.
In[5]:=
kk=Range[$n/2]
Out[5]=
{1,2,3}
In[6]:=
{gg,ff}=First[full];​​grn=NambuGreen[{gg〚kk,kk〛,ff〚kk,kk〛}];​​grn//ArrayShort
Out[6]=

0.301525
-0.0397476-0.0381598
-0.0510844+0.0846824
-0.0397476+0.0381598
0.676175
0.0219312+0.00543513
-0.0510844-0.0846824
0.0219312-0.00543513
0.579745
,
0
-0.0136839+0.0823599
-0.045609-0.027744
0.0136839-0.0823599
0
0.14+0.00194123
0.045609+0.027744
-0.14-0.00194123
0

In[7]:=
WickEntropy[grn]
Out[7]=
2.49201
Note that the above quantity is nothing but the entanglement entropy between the subsystem and the rest.
In[8]:=
WickEntanglementEntropy[full,kk]
Out[8]=
2.49201
SeeAlso
WickGreenFunction
 
▪
WickEntanglementEntropy
 
▪
WickMutualInformation
 
▪
WickState
TechNotes
▪
Quantum Many-Body Systems with Q3
▪
Quantum Information Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Fermionic Quantum Computation
▪
Quantum Many-Body Systems
▪
Quantum Information Systems
▪
Q3: Symbolic Quantum Simulation
RelatedLinks
▪
P. Calabrese and J. Carday (2004)
, Journal of Statistical Mechanics 2004, P06002 (2004), "Entanglement entropy and quantum field theory."
▪
I. Peschel (2003)
, Journal of Physics A 36, L205 (2003), "Calculation of reduced density matrices from correlation functions (article)."
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com