Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
NambuHermitian
​
NambuHermitian
[{ham,del}]
represents a (BCS-type) quadratic Hermitian operator in the Nambu space that is characterized by an
n×n
Hermitian matrix
ham
and an
n×n
anti-symmetric matrix
del
.
​
Details and Options

Examples  
(2)
Basic Examples  
(2)
Set the number of fermion modes to consider.
In[1]:=
$n=2;
Construct a BdG Hamiltonian matrix representing a BCS-type many-body Hamiltonian.
In[2]:=
SeedRandom[356];
In[3]:=
ham=RandomNambuHermitian[$n]​​ham//ArrayShort
Out[3]=
NambuHermitian
Target: All
Dimensions: {2,2}

Out[3]=

-0.724099
-0.834901-0.786713
-0.834901+0.786713
-0.320198
,
0
0.609707-1.75869
-0.609707+1.75869
0

In[4]:=
mat=Matrix[ham]
Out[4]=
SparseArray
Specified elements: 8
Dimensions: {4,4}

​
Let us examine the above operator in a conventional form. To do it, choose a specific set of fermion modes.
In[1]:=
Let[Fermion,c]​​cc=c[Range@$n]​​ccc=Join[cc,Dagger@cc]
Out[1]=
{
c
1
,
c
2
}
Out[1]=

c
1
,
c
2
,
†
c
1
,
†
c
2

Manually construct a BCS-type Hamiltonian including pairing terms. Notice the factor of 1/2.
In[2]:=
alt=MultiplyDot[Dagger[ccc],Normal[ham].ccc]/2
Out[2]=
1
2
(1.0443+0.)+(1.21941+3.51737)
c
2
c
1
-(1.4482+0.)
†
c
1
c
1
-(1.6698+1.57343)
†
c
1
c
2
+(1.21941-3.51737)
†
c
1
†
c
2
-(1.6698-1.57343)
†
c
2
c
1
-(0.640395+0.)
†
c
2
c
2

In[3]:=
new=Matrix[alt]
Out[3]=
SparseArray
Specified elements: 8
Dimensions: {4,4}

Compare the above single-particle Hamiltonian matrix with the original one.
In[4]:=
mat-new//ArrayZeroQ
Out[4]=
True
SeeAlso
NambuMatrix
 
▪
NambuUnitary
 
▪
NambuGreen
TechNotes
▪
Quantum Many-Body Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Fermionic Quantum Computation
▪
Quantum Many-Body Systems
▪
Q3: Symbolic Quantum Simulation
RelatedLinks
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer, 2022).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com