Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
WickMutualInformation
​
WickMutualInformation
[grn,{
k
1
,
k
2
,…}]
returns the mutual information between the subsystem consisting of fermion modes
{
k
1
,
k
2
,…}⊂{1,2,…,n}
in the
Wick state
characterized by
n×n
matrix
grn
of single-particle Green's functions.
​
​
WickMutualInformation
[
NambuGreen
[{grn,anm}],{
k
1
,
k
2
,…}]
or
WickMutualInformation
[{grn,anm},{
k
1
,
k
2
,…}]
​ returns the mutual information in the
Wick state
characterized by
n×n
matrices
grn
and
anm
of normal and anomalous Green's functions, respectively.
​
​
WickMutualInformation
[state,{
k
1
,
k
2
,…}]
is equivalent to
WickMutualInformation
[
WickGreenFunction
[in],{
k
1
,
k
2
,…}]
for Wick
state
.
​
​
WickMutualInformation
[{
k
1
,
k
2
,…}]
is an operator form of
WickMutualInformation
to be applied to Green's functions or
Wick state
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
In[1]:=
$n=6;
In[2]:=
SeedRandom[356];
Construct a Wick state. Make sure that the state is normalized.
In[3]:=
ws=RandomWickState[$n]
Out[3]=
WickState
Modes: 6
Prefactor: 1

In[4]:=
Norm[ws]
Out[4]=
1
Calculate the Green's functions.
In[5]:=
grn=WickGreenFunction[ws];​​grn//ArrayShort
Out[5]=

0.352675
-0.124765+0.081456
-0.0927493-0.157642
0.239447+0.00377437
…
-0.124765-0.081456
0.52844
-0.0166767-0.161439
0.0610354+0.0451316
…
-0.0927493+0.157642
-0.0166767+0.161439
0.774039
-0.0588351-0.0562971
…
0.239447-0.00377437
0.0610354-0.0451316
-0.0588351+0.0562971
0.617479
…
…
…
…
…
…
,
0
-0.102382+0.0567348
-0.0768921-0.0707724
-0.0893847-0.0740275
…
0.102382-0.0567348
0
-0.00934571+0.180003
0.0708578+0.225105
…
0.0768921+0.0707724
0.00934571-0.180003
0
0.115353+0.0140258
…
0.0893847+0.0740275
-0.0708578-0.225105
-0.115353-0.0140258
0
…
…
…
…
…
…

Consider a subsystem.
In[6]:=
aa=Range[$n/2]
Out[6]=
{1,2,3}
Calculate the mutual information between the subsystem and the rest.
In[7]:=
val=WickMutualInformation[grn,aa]
Out[7]=
3.39267
If you just need to calculate the mutual information once, there is a shortcut:
In[8]:=
WickMutualInformation[ws,aa]
Out[8]=
3.39267
Calculate the entanglement entropy between the subsystem and the rest.
In[9]:=
ent=WickEntanglementEntropy[grn,aa]
Out[9]=
1.69633
Since the Wick state is a pure state, the mutual information must be equal to twice the entropy of the subsystem.
In[10]:=
val-2*ent//Chop
Out[10]=
0
Scope  
(1)

SeeAlso
WickEntanglementEntropy
 
▪
WickLogarithmicNegativity
 
▪
WickGreenFunction
 
▪
WickState
 
▪
WickUnitary
 
▪
RandomWickCircuitSimulate
TechNotes
▪
VonNeumann Entropy
▪
Quantum Information Theory
▪
Quantum Information Systems with Q3
▪
Quantum Many-Body Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Fermionic Quantum Computation
▪
Quantum Many-Body Systems
▪
Q3: Symbolic Quantum Simulation
RelatedLinks
▪
P. Calabrese and J. Cardy (2004)
, Journal of Statistical Mechanics, P06002 (2004), "Entanglement entropy and quantum field theory."
▪
I. Peschel (2003)
, Journal of Physics A, 36, 205 (2003), "Calculation of reduced density matrices from correlation functions."
▪
B. M. Terhal and D. P. DiVincenzo (2002)
, Physical Review A 65, 032325, "Classical simulation of noninteracting-fermion quantum circuits."
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com