Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
Pauli
​
Pauli
[{
k
1
,
k
2
,…,
k
n
}]
represents a tensor product of Pauli operators on
n
qubits, with
Pauli
[{
k
i
}]
supposed to acting on the
i
th qubit.
​
​
Pauli
[n]
for integer
n
is an alias of
Pauli
[{n}]
.
​
​
Pauli
[0]
represents the identity operator on a two-dimensional Hilbert space.
​
​
Pauli
[1]
,
Pauli
[2]
, and
Pauli
[3]
​ represent the Pauli X, Y, and Z operators, respectively, on a two-dimensional Hilbert space.
​
​
Pauli
[4]
and
Pauli
[5]
​ represent the raising and lowering operator, respectively.
​
​
Pauli
[6]
represents the Hadamard operator.
​
​
Pauli
[7]
and
Pauli
[8]
​ represents the quadrant and octant phase gates, respectively.
​
​
Pauli
[10]
and
Pauli
[11]
​ represents the projection operators into
Ket
[{0}]
and
Ket
[{1}]
, respectively.
​
​
Pauli
[{
C
[-n]}]
represents a special phase gate by phase
ϕ=2π/
n
2
.
​
​
Pauli
[{-n}]
represents the Hermitian conjugate of
Pauli
[{n}]
.
​
Details and Options

Examples  
(9)
Basic Examples  
(6)
This is the identity operator on a single qubit.
In[1]:=
Pauli[0]
Out[1]=
I
These are the Pauli X, Y, and Z operators on a single qubit.
In[2]:=
{Pauli[1],Pauli[2],Pauli[3]}
Out[2]=
{X,Y,Z}
In[3]:=
Pauli[All]
Out[3]=
{X,Y,Z}
In[4]:=
Pauli[Full]
Out[4]=
{I,X,Y,Z}
Note that the expression is displayed as above, but is still interpreted as
Pauli
[...]
. To see this, copy and paste the output above to use the displayed form in later calculations.
In[5]:=
{"I","X","Y","Z"}//InputForm
Out[5]//InputForm=
{Pauli[{0}], Pauli[{1}], Pauli[{2}], Pauli[{3}]}
Pauli[4]
vs
Pauli[
Raising
]
,
Pauli[5]
vs
Pauli[
Lowering
]
: While
Pauli[
Raising
]
and
Pauli[5]
are expanded immediately into the expression in terms of
Pauli[1]
and
Pauli[2]
,
Pauli[4]
and
Pauli[5]
are kept intact.
In[6]:=
Pauli[4]​​Pauli[5]
Out[6]=
+
X
Out[6]=
-
X
In[7]:=
Pauli[Raising]​​Pauli[Lowering]
Out[7]=
1
2
(X+Y)
Out[7]=
1
2
(X-Y)
Pauli[6]
is the Hadamard operator.
In[8]:=
Pauli[6]
Out[8]=
H
In[9]:=
Pauli[Hadamard]
Out[9]=
X+Z
2
Pauli[7]
and
Pauli[8]
are the Pauli Quadrant and Octant operators, respectively, acting as relative phase gates.
In[10]:=
Pauli[7]​​Pauli[8]​​Pauli[9]
Out[10]=
S
Out[10]=
T
Out[10]=
F
In[11]:=
Matrix[Pauli[7]]//MatrixForm​​Matrix[Pauli[8]]//MatrixForm
Out[11]//MatrixForm=

1
0
0


Out[11]//MatrixForm=
1
0
0
π
4

In[12]:=
Pauli[Quadrant]​​Pauli[Octant]
Out[12]=
1
2
+

2
I+
1
2
-

2
Z
Out[12]=
1
2
1+
π
4

I+
1
2
1-
π
4

Z
Pauli[10]
and
Pauli[11]
are projections to Ket[0] and Ket[1], respectively.
In[13]:=
Pauli[10]​​Pauli[11]
Out[13]=
|0〉〈0|
Out[13]=
|1〉〈1|
In[14]:=
Matrix[Pauli[10]]//MatrixForm​​Matrix[Pauli[11]]//MatrixForm
Out[14]//MatrixForm=

1
0
0
0

Out[14]//MatrixForm=

0
0
0
1

​
For any positive integer
n
,
Pauli
[
C
[-n]]
represents a phase gate by angle
2π/
n
2
.
In[1]:=
Pauli[-1](*phasegate*)
Out[1]=
X
In[2]:=
Pauli[-2](*quadrantphasegate*)​​Pauli[-2]//Matrix//MatrixForm
Out[2]=
Y
Out[2]//MatrixForm=
0
-

0
​
The (non-commutative) multiplication of single-qubit Pauli operators.
​
Tensor products of Pauli matrices
Out[5]//TeXForm=
​
rac{1}{2} ext{X}\otimes ext{Y}\otimes ext{X}\otimes ( ext{X}+i ext{Y})
​
The (non-commutative) multiplication of multi-qubit Pauli operators.
​

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com