Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
WickLogarithmicNegativity
​
WickLogarithmicNegativity
[grn,{
k
1
,
k
2
,…}]
returns the logarithmic entanglement negativity between the subsystem consisting of fermion modes
{
k
1
,
k
2
,…}⊂{1,2,…,n}
in the
Wick state
characterized by
n×n
matrix
grn
of single-particle Green's functions.
​
​
WickLogarithmicNegativity
[
NambuGreen
[{grn,anm}],{
k
1
,
k
2
,…}]
or
WickLogarithmicNegativity
[{grn,anm},{
k
1
,
k
2
,…}]
​ returns the logarithmic negativity in the
Wick state
characterized by
n×n
matrices
grn
and
anm
of normal and anomalous Green's functions, respectively.
​
​
WickLogarithmicNegativity
[state,{
k
1
,
k
2
,…}]
is equivalent to
WickLogarithmicNegativity
[
WickGreenFunction
[state],{
k
1
,
k
2
,…}]
for Wick
state
.
​
​
WickLogarithmicNegativity
[{
k
1
,
k
2
,…}]
is an operator form of
WickLogarithmicNegativity
to be applied to Green's functions or
Wick state
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Set the number of fermion modes to consider.
In[1]:=
$n=6;
Construct a Wick state. Make sure that the state is normalized.
In[2]:=
SeedRandom[370];
In[3]:=
ws=RandomWickState[$n]
Out[3]=
WickState
Modes: 6
Prefactor: 1

In[4]:=
Norm[ws]
Out[4]=
1
Consider a subsystem.
In[5]:=
aa=Range[$n/2]
Out[5]=
{1,2,3}
In[6]:=
neg=WickLogarithmicNegativity[ws,aa]//Chop
Out[6]=
2.35427+2.26618
For non-interacting fermions, the Green's function has sufficient information about the many-body state.
In[7]:=
grn=WickGreenFunction[ws]​​grn//ArrayShort
Out[7]=
NambuGreen
Modes: All
Dimensions: {6,6}

Out[7]=

0.5101
0.0963945-0.180924
-0.0509206-0.00607804
-0.0210109+0.0714722
…
0.0963945+0.180924
0.637629
0.000330924+0.0620879
0.116681+0.210887
…
-0.0509206+0.00607804
0.000330924-0.0620879
0.224124
0.140732+0.156324
…
-0.0210109-0.0714722
0.116681-0.210887
0.140732-0.156324
0.43404
…
…
…
…
…
…
,
0
0.024597-0.0378415
-0.215658+0.0315273
-0.0164584+0.0774082
…
-0.024597+0.0378415
0
0.117709+0.0304277
0.129995-0.089784
…
0.215658-0.0315273
-0.117709-0.0304277
0
-0.0898702-0.0229223
…
0.0164584-0.0774082
-0.129995+0.089784
0.0898702+0.0229223
0
…
…
…
…
…
…

Calculate the same mutual information from the Green's function.
In[8]:=
alt=WickLogarithmicNegativity[grn,aa]//Chop
Out[8]=
2.35427+2.26618
In[9]:=
neg-alt//Chop
Out[9]=
0
Scope  
(1)

SeeAlso
WickEntanglementEntropy
 
▪
WickMutualInformation
TechNotes
▪
Quantum States
▪
Quantum Information Theory
▪
Quantum Information Systems with Q3
▪
Quantum Many-Body Systems with Q3
RelatedGuides
▪
Fermionic Quantum Computation
▪
Quantum Information Systems
▪
Quantum Many-Body Systems
RelatedLinks
▪
H. Shapourian and S. Ryu (2017)
, Physical Review B 95, 165101 (2017), "Partial time-reversal transformation and entanglement negativity in fermionic systems."
▪
H. Shapourian and S. Ryu (2019a)
, Physical Review A 99, 022310 (2019), "Entanglement negativity of fermions: Monotonicity, separability criterion, and classification of few-mode states."
▪
H. Shapourian and S. Ryu (2019b)
, Journal of Statistical Mechanics 2019, 043106 (2019), "Finite-temperature entanglement negativity of free fermions."
▪
J. Eisert, V. Eisler and Z. Zimborás (2018)
, Physical Review B 97, 165123 (2018), "Entanglement negativity bounds for fermionic Gaussian states."
▪
M. M. Wolf (2003)
, Ph.D. Thesis, "Partial Transposition in Quantum Information Theory" (Technischen Universität Carolo-Wilhelmina, 2003).
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com