Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
QuantumMob`Q3mini`
WickMonitor
​
WickMonitor
[in,ham,msr,{τ,dt}]
solves the problem of continuous monitoring of a non-interacting many-fermion system by using the Monte Carlo simulation method. The model is specified by the single-particle Hamiltonian
ham
in the
WickHermitian
form, and the dressed fermion modes the occupation numbers of which to be monitored are specified by measurement
msr
in the
WickMeasurement
form. The simulation starts from the initial state
in
in the
WickState
form at time 0 and runs to time
tau
in steps of size
dt
.
​
​
WickMonitor
[in,ham,{τ,dt}]
assumes the continuous monitor of the occupation numbers the bare fermion modes; that is , it equivalent to
WickMonitor
[in,ham,
WickMeasurement
[{1,2,…,n}],{τ,dt}]
.
​
​
WickMonitor
[in,ham,{τ,dt,k}]
or
WickMonitor
[in,ham,msr,{τ,dt,k}]
​ collects states in steps of
k×dt
(rather than
dt
), where
k
must be an integer or
All
.
​
Details and Options

Examples  
(10)
Basic Examples  
(2)
Consider some fermion modes.
In[1]:=
$n=4;
Construct a Hamiltonian.
In[2]:=
SeedRandom[370];
In[3]:=
ham=RandomWickHermitian[$n]​​ham//ArrayShort
Out[3]=
WickHermitian
Modes: 4
Dimensions: {8,8}

Out[3]//MatrixForm=
0
-0.607449
0.179529
-0.400114
…
0.607449
0
-0.3022
-0.990884
…
-0.179529
0.3022
0
-0.208244
…
0.400114
0.990884
0.208244
0
…
…
…
…
…
…
Set an initial state.
In[4]:=
in=WickState[{1,0},$n];
Do the Monte Carlo simulation.
In[5]:=
SeedRandom[378];
In[6]:=
EchoTiming[​​data=WickMonitor[in,ham,{$T=2,$dt=0.01},​​"Samples"150]​​];​​Dimensions[data]
⌚
0.818982
Out[6]=
{150,201}
​
Now, Let us examine the entanglement properties of the data.
First, choose the subsystem.
In[1]:=
kk=Range[$n/2]
Out[1]=
{1,2}
Calculate the
entanglement entropy
(EE) between the subsystem and the rest.
In[2]:=
EchoTiming[​​ee=WickEntanglementEntropy[data,kk]​​];​​Dimensions[ee]
⌚
2.10982
Out[2]=
{150,201}
In[3]:=
ListLinePlot[Mean@ee,​​DataRange{0,$T},​​PlotMarkersAutomatic,​​FrameLabel{"γ
t
","〈EE (​
L
​,
L
/2)〉"}​​]
Out[3]=
Construct approximate density matrices, and calculate the
logarithmic negativity
(LN) between the subsystem and the rest.
In[4]:=
EchoTiming[​​avg=WickMean[data];​​neg=WickLogarithmicNegativity[avg,kk]​​];​​Dimensions[neg]
⌚
0.427877
Out[4]=
{201}
In[5]:=
ListLinePlot[Re@neg,​​DataRange{0,$T},​​PlotMarkersAutomatic,​​FrameLabel{"γ
t
","〈LN (​
L
​,
L
/2)〉"}​​]
Out[5]=
Applications  
(8)

SeeAlso
RandomWickCircuitSimulate
 
▪
WickSimulate
 
▪
WickState
 
▪
WickUnitary
 
▪
WickMeasurement
TechNotes
▪
Quantum Many-Body Systems with Q3
▪
Quantum Information Systems with Q3
▪
Q3: Quick Start

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com