Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

Q3mini

Guides

  • Fermionic Quantum Computation
  • Q3: Symbolic Quantum Simulation
  • Quantum Information Systems
  • Quantum Many-Body Systems
  • Quantum Spin Systems

Tech Notes

  • About Q3
  • Q3: Quick Start
  • Quantum Fourier Transform
  • Quantum Information Systems with Q3
  • Quantum Many-Body Systems with Q3
  • Quantum Operations
  • Quantum Spin Systems with Q3
  • Quantum States
  • Quantum Teleportation
  • Quick Quantum Computing with Q3

Symbols

  • Basis
  • Boson
  • Bra
  • CNOT
  • ControlledGate
  • ExpressionFor
  • Fermion
  • Heisenberg
  • Ket
  • Let
  • Majorana
  • Matrix
  • Multiply
  • NambuGreen
  • NambuHermitian
  • NambuMatrix
  • NambuUnitary
  • Pauli
  • Phase
  • QuantumCircuit
  • Qubit
  • Qudit
  • RandomWickCircuitSimulate
  • Rotation
  • Species
  • Spin
  • SWAP
  • WickCircuit
  • WickEntanglementEntropy
  • WickEntropy
  • WickGreenFunction
  • WickJump
  • WickLindbladSolve
  • WickLogarithmicNegativity
  • WickMeasurement
  • WickMonitor
  • WickMutualInformation
  • WickNonunitary
  • WickSimulate
  • WickState
  • WickUnitary

Overviews

  • The Postulates of Quantum Mechanics
  • Quantum Algorithms
  • Quantum Computation: Models
  • Quantum Computation: Overview
  • Quantum Error-Correction Codes
  • Quantum Information Theory
  • Quantum Noise and Decoherence
Fermionic Quantum Computation
Fermionic quantum computation is a model of quantum computation based on local fermionic modes. It was introduced by
Bravyi and Kitaev in 2002
.
Q3 provides tools to efficiently simulate a subclass of fermionic quantum computation models called Wick circuits, where unitary gates are associated with quadratic Hamiltonian (describing non-interacting fermions) and interspersed complete von Neumann measurement in the computational basis (measurement outcome describing an empty or occupied fermionic mode), which is described in Terhal and DiVincenzo (2002) and Knill (2001).
Random Wick circuits may be one of prototype quantum circuits that exhibit the phenomenon of measurement-induced entanglement transition, a transition between two distinct phases with the entanglement entropy characterized by area- and volume-law scaling. See also Li, Chen, and Fisher (2018), Skinner, Ruhman, and Nahum (2019), Chan et. al. (2019), Sang et al. (2021), and Weinstein, Bao, and Altman (2022).
Elementary Tools
WickState
— Represents a fermionic Gaussian state
WickUnitary
— Represents a Gaussian-type unitary operator
WickNonunitary
— Represents a Gaussian-type evolution operator governed by a non-Hermitian Hamiltonian
WickMeasurement
— Represents a measurement of the occupation number on fermion modes
WickJump
— Represents a set of quantum jump operators that are linear combinations of Majorana operators
WickOperator
— Represents a non-unitary gate on Wick states
WickDensityMatrix
▪
WickElements
▪
WickCoefficients
Physical Properties
WickGreenFunction
— Single-particle Green's functions with respect to a Wick or BdG state
WickEntropy
— Von Neumann entropy in a fermionic Gaussian state
WickEntanglementEntropy
— Entanglement entropy in a Wick or BdG state
WickMutualInformation
— Mutual information in a Wick or BdG state
WickLogarithmicNegativity
— Logarithmic negativity in a Wick or BdG state
WickOccupation
Simulations
RandomWickCircuitSimulate
— Simulates random quantum circuits with fermionic gates and von Neumann measurements in the computational basis
WickSimulate
— Simulates the quantum master equation for a non-interacting dissipative fermionic system
WickMonitor
— Simulates the continuous monitoring of fermion modes
WickCircuit
▪
RandomWickCircuit
Numerical Solution of Quantum Master Equation
WickLindbladSolve
— Solves numerically fermionic quantum master equations with quantum jump operators that are linear in fermion creation operators or projection operators of dressed fermion modes.
Tools for Bogoliubov-de Gennes (BdG) Models
NambuMatrix
— Represents an arbitrary matrix in the Nambu space
NambuUnitary
— Represents a unitary matrix in the Nambu space
NambuHermitian
— Represents a Hermitian matrix in the Nambu space
NambuGreen
— Represents the matrix of Green's function of fermion modes in the Nambu space
NambuOne
▪
NambuZero
TechNotes
▪
Quantum Information Systems with Q3
▪
Quantum Many-Body Systems with Q3
▪
Quantum Spin Systems with Q3
▪
Q3: Quick Start
RelatedGuides
▪
Quantum Information Systems
▪
Quantum Many-Body Systems
▪
Quantum Spin Systems
▪
Q3: Symbolic Quantum Simulation
RelatedLinks
▪
S. B. Bravyi and A. Y. Kitaev (2002)
, Annals of Physics 298, 210–226, "Fermionic Quantum Computation."
▪
S. Bravyi and R. König (2012)
, Quantum Information & Computation 12, 925 (2012), "Classical simulation of dissipative fermionic linear optics."
▪
S. Bravyi (2005)
, Quantum Information & Computation 5, 216 (2005), "Lagrangian representation for fermionic linear optics."
▪
B. M. Terhal and D. P. DiVincenzo (2002)
, Physical Review A 65, 032325, "Classical simulation of noninteracting-fermion quantum circuits."
▪
E. Knill (2001)
, arXiv:quant-ph/0108033, "Fermionic Linear Optics and Matchgates."
▪
Y. Li, X. Chen, and M. P. A. Fisher (2018)
, Physical Review B 98, 205136 (2018), "Quantum Zeno effect and the many-body entanglement transition."
▪
B. Skinner, J. Ruhman, and A. Nahum (2019)
, Physical Review X 9, 031009 (2019), "Measurement-Induced Phase Transitions in the Dynamics of Entanglement."
▪
A. Chan et. al. (2019)
, Physical Review B 99, 224307 (2019), "Unitary-projective entanglement dynamics."
▪
S. Sang et al. (2021)
, PRX Quantum 2, 030313 (2021), "Entanglement Negativity at Measurement-Induced Criticality."
▪
Z. Weinstein, Y. Bao, and E. Altman (2022)
, Physical Review Letters 129, 080501 (2022), "Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit."
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com