Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
frobenius
linearization
myMatrixRank
NLcalculaterelativedegree
NLcontrollability
NLdynamicextension
NLKarmanDecomposition
NLobservability
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
m
y
M
a
t
r
i
x
R
a
n
k
{
r
,
r
0
}
=
m
y
M
a
t
r
i
x
R
a
n
k
[
m
a
t
,
x
c
,
x
0
]
c
a
l
c
u
l
a
t
e
s
t
h
e
m
i
n
i
m
a
l
r
a
n
k
o
f
t
h
e
m
a
t
r
i
x
m
a
t
,
w
h
i
c
h
a
s
a
f
u
n
c
t
i
o
n
o
f
v
e
c
t
o
r
x
c
,
a
n
d
r
e
t
u
r
n
s
i
t
a
s
r
,
a
n
d
t
h
e
r
a
n
k
o
f
t
h
e
m
a
t
r
i
x
m
a
t
w
h
e
n
x
c
i
s
e
q
u
a
l
t
o
a
n
u
m
e
r
i
c
v
e
c
t
o
r
x
0
,
a
n
d
r
e
t
u
r
n
s
i
t
a
s
r
0
.
B
y
m
i
n
i
m
a
l
r
a
n
k
,
I
m
e
a
n
t
h
a
t
i
t
i
s
t
h
e
m
i
n
i
m
a
l
r
a
n
k
f
o
r
t
h
e
m
a
t
r
i
x
m
a
t
w
h
e
n
x
c
i
s
a
n
y
g
i
v
e
n
p
o
s
s
i
b
l
e
v
a
l
u
e
a
c
c
o
r
d
i
n
g
t
o
$
A
s
s
u
m
p
t
i
o
n
s
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
m
a
t
=
{
{
x
1
,
1
}
,
{
-
x
1
,
1
}
,
{
1
-
x
2
,
x
1
}
}
O
u
t
[
1
]
=
{
{
x
1
,
1
}
,
{
-
x
1
,
1
}
,
{
1
-
x
2
,
x
1
}
}
I
n
[
2
]
:
=
m
y
M
a
t
r
i
x
R
a
n
k
[
m
a
t
,
{
x
1
,
x
2
}
,
{
0
,
0
}
]
O
u
t
[
2
]
=
{
1
,
2
}
S
e
e
A
l
s
o
M
a
t
r
i
x
R
a
n
k
▪
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
"
]
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
N
o
n
l
i
n
e
a
r
S
y
s
t
e
m
s
`
"
"