Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NonlinearSystems

Guides

  • Guide to ZigangPan`NonlinearSystems`

Symbols

  • convert2NLsystem
  • emptyNLsystem
  • frobenius
  • linearization
  • myMatrixRank
  • NLcalculaterelativedegree
  • NLcontrollability
  • NLdynamicextension
  • NLKarmanDecomposition
  • NLobservability
  • NLsystemblockdiagonal
  • NLsystemcheck
  • NLsystemconcatenate
  • NLsystemfeedback
  • NLsystemoperation
  • NLsystemparallel
  • simulationNLsystem
  • sinewavesystem
ZigangPan`NonlinearSystems`
myMatrixRank
​
{
r
,
r0
}=myMatrixRank[mat,xc,x0] calculates the minimal rank of the matrix
mat
, which as a function of vector
xc
, and returns it as
r
, and the rank of the matrix
mat
when
xc
is equal to a numeric vector
x0
, and returns it as
r0
. By minimal rank, I mean that it is the minimal rank for the matrix
mat
when
xc
is any given possible value according to $Assumptions.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
mat={{x1,1},{-x1,1},{1-x2,x1}}
Out[1]=
{{x1,1},{-x1,1},{1-x2,x1}}
In[2]:=
myMatrixRank
[mat,{x1,x2},{0,0}]
Out[2]=
{1,2}
SeeAlso
MatrixRank
 
▪
ResourceFunction["LinearlyIndependent"]
RelatedGuides
▪
Guide to ZigangPan`NonlinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com