Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
linearization
NLcalculaterelativedegree
NLdynamicextension
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
N
L
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
N
L
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
[
n
l
s
y
s
t
e
m
]
a
p
p
l
i
e
s
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
t
o
t
h
e
a
n
o
n
l
i
n
e
a
r
a
f
f
i
n
e
s
y
s
t
e
m
t
o
d
e
t
e
r
m
i
n
e
w
h
e
t
h
e
r
i
t
m
a
y
a
d
m
i
t
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
f
r
o
m
t
h
e
a
c
t
i
v
e
i
n
p
u
t
s
t
o
t
h
e
a
c
t
i
v
e
o
u
t
p
u
t
s
a
f
t
e
r
s
o
m
e
s
t
e
p
s
o
f
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
.
I
f
t
h
e
s
y
s
t
e
m
d
o
e
s
n
o
t
a
d
m
i
t
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
a
n
d
m
a
y
b
e
e
x
t
e
n
d
e
d
t
o
a
d
m
i
t
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
,
t
h
e
n
t
h
e
o
u
t
p
u
t
i
s
a
5
-
t
e
r
m
l
i
s
t
{
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
,
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
,
s
y
s
t
e
m
e
x
t
e
n
d
e
d
,
s
y
s
t
e
m
a
d
d
n
e
w
}
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
=
T
r
u
e
,
t
h
e
e
x
t
e
n
d
e
d
s
y
s
t
e
m
i
s
s
y
s
t
e
m
e
x
t
e
n
d
e
d
,
t
h
e
a
d
d
e
d
d
y
n
a
m
i
c
s
i
n
t
h
e
e
x
t
e
n
s
i
o
n
p
r
o
c
e
s
s
i
s
s
y
s
t
e
m
a
d
d
n
e
w
,
t
h
e
i
n
d
i
v
i
d
u
a
l
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
o
f
e
a
c
h
o
u
t
p
u
t
i
s
t
h
e
l
i
s
t
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
a
n
d
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
i
s
t
h
e
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
m
a
t
r
i
x
o
f
t
h
e
e
x
t
e
n
d
e
d
s
y
s
t
e
m
.
I
f
t
h
e
s
y
s
t
e
m
d
o
e
s
a
d
m
i
t
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
b
u
t
t
h
e
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
a
r
e
n
o
t
u
n
i
f
o
r
m
,
t
h
e
n
t
h
e
o
u
t
p
u
t
i
s
a
g
a
i
n
a
5
-
t
e
r
m
l
i
s
t
{
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
,
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
,
s
y
s
t
e
m
e
x
t
e
n
d
e
d
,
s
y
s
t
e
m
a
d
d
n
e
w
}
T
h
e
f
u
n
c
t
i
o
n
t
h
e
n
a
p
p
l
i
e
s
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
t
o
t
h
e
s
y
s
t
e
m
t
o
y
i
e
l
d
u
n
i
f
o
r
m
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
.
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
=
T
r
u
e
,
t
h
e
e
x
t
e
n
d
e
d
s
y
s
t
e
m
i
s
s
y
s
t
e
m
e
x
t
e
n
d
e
d
,
t
h
e
a
d
d
e
d
d
y
n
a
m
i
c
s
i
n
t
h
e
e
x
t
e
n
s
i
o
n
p
r
o
c
e
s
s
i
s
s
y
s
t
e
m
a
d
d
n
e
w
,
t
h
e
i
n
d
i
v
i
d
u
a
l
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
o
f
e
a
c
h
o
u
t
p
u
t
i
s
t
h
e
l
i
s
t
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
a
n
d
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
i
s
t
h
e
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
m
a
t
r
i
x
o
f
t
h
e
e
x
t
e
n
d
e
d
s
y
s
t
e
m
.
I
f
t
h
e
s
y
s
t
e
m
a
d
m
i
t
s
u
n
i
f
o
r
m
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
t
o
b
e
g
i
n
w
i
t
h
,
t
h
e
n
t
h
e
o
u
t
p
u
t
i
s
a
4
-
t
e
r
m
l
i
s
t
{
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
,
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
,
s
y
s
t
e
m
e
x
t
e
n
d
e
d
}
I
t
b
a
s
i
c
a
l
l
y
r
e
p
o
r
t
s
t
h
a
t
t
h
e
s
y
s
t
e
m
a
d
m
i
t
s
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
b
y
s
e
t
t
i
n
g
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
=
T
r
u
e
,
t
h
e
l
i
s
t
o
f
i
n
d
i
v
i
d
u
a
l
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
o
f
e
a
c
h
o
u
t
p
u
t
i
s
l
i
s
t
e
d
i
n
r
e
l
a
t
i
v
e
d
e
g
r
e
e
s
,
t
h
e
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
m
a
t
r
i
x
i
s
h
i
g
h
f
r
e
q
u
e
n
c
y
g
a
i
n
,
t
h
e
s
y
s
t
e
m
i
t
s
e
l
f
i
s
r
e
t
u
r
n
e
d
i
n
s
y
s
t
e
m
e
x
t
e
n
d
e
d
.
I
f
t
h
e
s
y
s
t
e
m
c
a
n
n
o
t
b
e
e
x
t
e
n
d
e
d
t
o
a
d
m
i
t
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
,
t
h
e
n
t
h
e
o
u
t
p
u
t
i
s
s
e
t
t
o
'
e
r
r
o
r
'
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
n
l
s
y
s
t
e
m
7
=
{
{
x
1
,
x
2
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
-
x
1
+
x
1
*
x
2
+
u
1
,
-
x
2
^
3
+
u
1
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
x
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
;
I
n
[
2
]
:
=
N
L
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
[
n
l
s
y
s
t
e
m
7
]
S
y
s
t
e
m
a
l
r
e
a
d
y
h
a
s
u
n
i
f
o
r
m
v
e
c
t
o
r
r
e
l
a
t
i
v
e
d
e
g
r
e
e
!
O
u
t
[
2
]
=
{
T
r
u
e
,
{
1
,
1
}
,
{
{
1
,
0
}
,
{
1
,
1
}
}
,
{
{
x
1
,
x
2
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
-
x
1
+
x
1
x
2
+
u
1
,
-
3
x
2
+
u
1
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
x
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
}
I
n
[
3
]
:
=
n
l
s
y
s
t
e
m
=
{
{
x
1
,
x
2
,
x
3
,
x
4
}
,
{
u
1
,
u
2
,
w
1
}
,
{
y
1
,
y
2
,
z
1
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
x
3
,
x
4
,
u
1
,
u
2
,
w
1
}
,
{
-
x
1
+
x
3
+
x
4
+
x
1
^
2
+
u
1
+
w
1
,
-
x
1
-
x
2
^
3
-
x
3
+
2
x
4
+
u
1
,
-
x
3
+
u
2
,
-
x
4
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
x
3
,
x
4
,
u
1
,
u
2
,
w
1
}
,
{
x
1
,
x
2
+
w
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
3
}
,
{
1
,
2
}
,
{
3
}
}
;
I
n
[
4
]
:
=
N
L
s
y
s
t
e
m
c
h
e
c
k
[
n
l
s
y
s
t
e
m
]
O
u
t
[
4
]
=
T
r
u
e
I
n
[
5
]
:
=
N
L
c
a
l
c
u
l
a
t
e
r
e
l
a
t
i
v
e
d
e
g
r
e
e
[
n
l
s
y
s
t
e
m
]
O
u
t
[
5
]
=
{
F
a
l
s
e
,
{
1
,
1
}
,
{
{
1
,
0
}
,
{
1
,
0
}
}
}
I
n
[
6
]
:
=
N
L
d
y
n
a
m
i
c
e
x
t
e
n
s
i
o
n
[
n
l
s
y
s
t
e
m
]
O
u
t
[
6
]
=
{
T
r
u
e
,
{
2
,
2
}
,
{
{
1
,
2
}
,
{
1
,
1
}
}
,
{
{
x
5
,
x
1
,
x
2
,
x
3
,
x
4
}
,
{
u
3
,
u
4
,
u
1
,
u
2
,
w
1
}
,
{
y
3
,
y
4
,
y
1
,
y
2
,
z
1
}
,
{
F
u
n
c
t
i
o
n
[
{
x
5
,
x
1
,
x
2
,
x
3
,
x
4
,
u
3
,
u
4
,
u
1
,
u
2
,
w
1
}
,
{
u
3
,
u
1
+
w
1
-
x
1
+
2
x
1
+
x
3
+
x
4
+
x
5
,
u
1
-
x
1
-
3
x
2
-
x
3
+
2
x
4
+
x
5
,
u
2
+
u
4
-
x
3
,
u
2
+
u
4
-
x
4
}
]
,
F
u
n
c
t
i
o
n
[
{
x
5
,
x
1
,
x
2
,
x
3
,
x
4
,
u
3
,
u
4
,
u
1
,
u
2
,
w
1
}
,
{
x
5
,
u
4
,
x
1
,
w
1
+
x
2
,
x
2
}
]
}
,
{
1
,
2
}
,
{
3
,
4
}
,
{
1
,
2
,
3
,
4
}
,
{
5
}
,
{
1
,
2
,
3
,
4
}
,
{
5
}
}
,
{
{
x
5
}
,
{
u
3
,
u
4
}
,
{
y
3
,
y
4
}
,
{
F
u
n
c
t
i
o
n
[
{
x
5
,
u
3
,
u
4
}
,
{
u
3
}
]
,
F
u
n
c
t
i
o
n
[
{
x
5
,
u
3
,
u
4
}
,
{
x
5
,
u
4
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
}
S
e
e
A
l
s
o
N
L
c
a
l
c
u
l
a
t
e
r
e
l
a
t
i
v
e
d
e
g
r
e
e
"
"