Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NonlinearSystems

Guides

  • Guide to ZigangPan`NonlinearSystems`

Symbols

  • convert2NLsystem
  • emptyNLsystem
  • frobenius
  • linearization
  • myMatrixRank
  • NLcalculaterelativedegree
  • NLcontrollability
  • NLdynamicextension
  • NLKarmanDecomposition
  • NLobservability
  • NLsystemblockdiagonal
  • NLsystemcheck
  • NLsystemconcatenate
  • NLsystemfeedback
  • NLsystemoperation
  • NLsystemparallel
  • simulationNLsystem
  • sinewavesystem
ZigangPan`NonlinearSystems`
NLKarmanDecomposition
​
{ncbo,ncbob,nco,ncob,transformation,resultsystem}=KarmanDecomposition[nlsystem,x0] computes the Karman decomposition of the nonlinear system:
nlsystem
around the state vector
x0
.
nlsystem
: a
nlsystem
in the 10 term representation
x0
: a desired state vector ncbo : dimension of uncontrollable but observable states ncbob : dimension of uncontrollable and unobservable states nco : dimension of controllable and observable states ncob : dimension of controllable but unobservable states transformation : the state transformation that brings the system into Karman decomposition resultsystem : the representation of the original system in new coordinates. Note that ncbo + ncbob + nco + ncob = n = dimension of the system.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system={{x1,x2,x3,x4,x5},{u1,u2},{y1,y2},{{-1,1,0,0,0,1,-1},{1,-1,0,0,1,-1,0},{0,0,1,0,0,0,0},{1,0,0,0,0,1,0},{0,0,0,0,0,0,0},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{},{1,2},{}}
Out[1]=
{{x1,x2,x3,x4,x5},{u1,u2},{y1,y2},{{-1,1,0,0,0,1,-1},{1,-1,0,0,1,-1,0},{0,0,1,0,0,0,0},{1,0,0,0,0,1,0},{0,0,0,0,0,0,0},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{},{1,2},{}}
In[2]:=
NLKarmanDecomposition

convert2NLsystem
[system],{0,0,0,0,0}
State transformation is xnew = transformation[xold] and transformation is a pure function; One may attach the inverse transformation as the third element in type, which must also be a pure function.
Out[2]=
{1,1,2,1,{x5,x3,x1,x2,x4},{{x11,x21,x31,x41,x51},{u1,u2},{y1,y2},{Function[{x11,x21,x31,x41,x51,u1,u2},{0,x21,u1-u2-x31+x41,-u1+x11+x31-x41,u1+x31}],Function[{x11,x21,x31,x41,x51,u1,u2},{x31,x41}]},{1,2},{1,2},{1,2},{},{1,2},{}}}
SeeAlso
NLcontrollability
 
▪
NLobservability
RelatedGuides
▪
Guide to ZigangPan`NonlinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com