Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
frobenius
linearization
myMatrixRank
NLcalculaterelativedegree
NLcontrollability
NLdynamicextension
NLKarmanDecomposition
NLobservability
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
f
r
o
b
e
n
i
u
s
s
o
l
=
f
r
o
b
e
n
i
u
s
[
u
a
,
x
c
,
x
0
]
a
p
p
l
i
e
s
t
h
e
F
r
o
b
e
n
i
u
s
T
h
e
o
r
e
m
t
o
a
c
o
l
l
e
c
t
i
o
n
o
f
v
e
c
t
o
r
f
i
e
l
d
s
s
t
o
r
e
d
i
n
t
h
e
m
a
t
r
i
x
u
a
(
e
v
e
r
y
r
o
w
i
s
a
v
e
c
t
o
r
f
i
e
l
d
)
,
u
a
i
s
a
s
s
u
m
e
d
t
o
b
e
i
n
v
o
l
u
t
i
v
e
a
n
d
n
o
n
s
i
n
g
u
l
a
r
(
a
t
l
e
a
s
t
l
o
c
a
l
l
y
a
r
o
u
n
d
x
0
)
,
x
c
i
s
t
h
e
s
t
a
t
e
v
e
c
t
o
r
.
I
t
r
e
t
u
r
n
s
s
o
l
,
w
h
i
c
h
i
s
a
v
e
c
t
o
r
o
f
f
u
n
c
t
i
o
n
s
o
f
x
c
(
f
o
r
m
u
l
a
s
)
o
f
l
e
n
g
t
h
L
e
n
g
t
h
[
x
c
]
-
L
e
n
g
t
h
[
u
a
]
,
w
h
o
s
e
d
i
f
f
e
r
e
n
t
i
a
l
s
a
r
e
l
i
n
e
a
r
l
y
i
n
d
e
p
e
n
d
e
n
t
a
n
d
a
n
n
i
h
i
l
a
t
e
s
v
e
c
t
o
r
f
i
e
l
d
s
i
n
u
a
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
u
a
=
{
{
1
,
-
1
,
0
,
1
,
0
}
,
{
-
1
,
0
,
0
,
0
,
0
}
,
{
2
,
-
1
,
0
,
-
1
,
0
}
}
;
x
c
=
{
x
1
,
x
2
,
x
3
,
x
4
,
x
5
}
;
x
0
=
{
0
,
0
,
0
,
0
,
0
}
O
u
t
[
1
]
=
{
0
,
0
,
0
,
0
,
0
}
I
n
[
2
]
:
=
l
o
c
a
l
i
n
v
o
l
u
t
i
v
e
Q
[
u
a
,
x
c
,
x
0
]
O
u
t
[
2
]
=
T
r
u
e
I
n
[
3
]
:
=
F
r
o
b
e
n
i
u
s
[
u
a
,
x
c
,
x
0
]
O
u
t
[
3
]
=
{
x
3
,
x
5
}
S
e
e
A
l
s
o
N
L
c
o
n
t
r
o
l
l
a
b
i
l
i
t
y
▪
N
L
o
b
s
e
r
v
a
b
i
l
i
t
y
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
N
o
n
l
i
n
e
a
r
S
y
s
t
e
m
s
`
"
"