Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
frobenius
linearization
myLinearlyIndependent
myMatrixRank
NLcalculaterelativedegree
NLcontrollability
NLdynamicextension
NLKarmanDecomposition
NLobservability
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
m
y
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
m
y
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
[
l
i
s
t
o
f
v
e
c
t
o
r
s
]
r
e
t
u
r
n
s
T
r
u
e
i
f
t
h
e
l
i
s
t
o
f
v
e
c
t
o
r
s
i
n
l
i
s
t
o
f
v
e
c
t
o
r
s
i
s
l
i
n
e
a
r
l
y
i
n
d
e
p
e
n
d
e
n
t
.
O
t
h
e
r
w
i
s
e
,
i
t
r
e
t
u
r
n
s
F
a
l
s
e
.
W
h
e
n
s
o
m
e
e
l
e
m
e
n
t
s
o
f
l
i
s
t
o
f
v
e
c
t
o
r
s
a
r
e
s
y
m
b
o
l
i
c
v
a
r
i
a
b
l
e
s
t
h
e
f
u
n
c
t
i
o
n
r
e
t
u
r
n
s
t
h
e
c
o
n
d
i
t
i
o
n
a
l
e
x
p
r
e
s
s
i
o
n
f
o
r
t
h
e
v
e
c
t
o
r
s
t
o
b
e
l
i
n
e
a
r
l
y
i
n
d
e
p
e
n
d
e
n
t
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
m
a
t
=
{
{
x
1
,
1
}
,
{
-
x
1
,
1
}
,
{
1
-
x
2
,
x
1
}
}
O
u
t
[
1
]
=
{
{
x
1
,
1
}
,
{
-
x
1
,
1
}
,
{
1
-
x
2
,
x
1
}
}
I
n
[
2
]
:
=
m
y
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
[
m
a
t
]
O
u
t
[
2
]
=
F
a
l
s
e
I
n
[
3
]
:
=
m
y
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
[
T
r
a
n
s
p
o
s
e
[
m
a
t
]
]
O
u
t
[
3
]
=
2
2
x
1
+
4
x
1
+
2
(
-
1
+
x
2
)
≠
0
I
n
[
4
]
:
=
a
s
s
u
m
e
R
e
a
l
[
{
x
1
,
x
2
}
]
O
u
t
[
4
]
=
x
1
∈
&
&
x
2
∈
I
n
[
5
]
:
=
F
u
l
l
S
i
m
p
l
i
f
y
m
y
L
i
n
e
a
r
l
y
I
n
d
e
p
e
n
d
e
n
t
[
T
r
a
n
s
p
o
s
e
[
m
a
t
]
]
O
u
t
[
5
]
=
2
2
x
1
+
4
x
1
+
2
(
-
1
+
x
2
)
≠
0
S
e
e
A
l
s
o
M
a
t
r
i
x
R
a
n
k
▪
m
y
M
a
t
r
i
x
R
a
n
k
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
N
o
n
l
i
n
e
a
r
S
y
s
t
e
m
s
`
"
"