Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
linearization
NLcalculaterelativedegree
NLdynamicextension
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
l
i
n
e
a
r
i
z
a
t
i
o
n
{
s
y
s
t
e
m
,
y
0
}
=
l
i
n
e
a
r
i
z
a
t
i
o
n
[
n
l
s
y
s
t
e
m
,
o
p
e
r
a
t
i
n
g
p
o
i
n
t
]
l
i
n
e
a
r
i
z
e
s
n
l
s
y
s
t
e
m
a
t
t
h
e
o
p
e
r
a
t
i
n
g
p
o
i
n
t
=
{
x
0
,
u
0
}
.
T
h
e
l
i
n
e
a
r
i
z
e
d
s
y
s
t
e
m
i
s
s
y
s
t
e
m
i
n
L
T
I
f
o
r
m
a
t
a
n
d
t
h
e
o
u
t
p
u
t
o
f
t
h
e
s
y
s
t
e
m
a
t
o
p
e
r
a
t
i
n
g
p
o
i
n
t
i
s
y
0
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
n
l
s
y
s
t
e
m
7
=
{
{
x
1
,
x
2
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
-
x
1
+
x
1
*
x
2
+
u
1
,
-
x
2
^
3
+
u
1
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
x
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
;
I
n
[
2
]
:
=
N
L
s
y
s
t
e
m
c
h
e
c
k
[
n
l
s
y
s
t
e
m
7
]
O
u
t
[
2
]
=
T
r
u
e
I
n
[
3
]
:
=
{
s
y
s
t
e
m
,
y
0
}
=
l
i
n
e
a
r
i
z
a
t
i
o
n
[
n
l
s
y
s
t
e
m
7
,
{
{
1
,
0
}
,
{
1
,
-
1
}
}
]
O
u
t
[
3
]
=
{
{
{
x
1
l
,
x
2
l
}
,
{
u
1
l
,
u
2
l
}
,
{
y
1
l
,
y
2
l
}
,
{
{
-
1
,
1
,
1
,
0
}
,
{
0
,
0
,
1
,
1
}
,
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
,
{
1
,
0
}
}
I
n
[
4
]
:
=
s
y
s
t
e
m
c
h
e
c
k
[
s
y
s
t
e
m
]
O
u
t
[
4
]
=
T
r
u
e
S
e
e
A
l
s
o
N
L
s
y
s
t
e
m
c
h
e
c
k
▪
c
o
n
v
e
r
t
2
N
L
s
y
s
t
e
m
"
"