Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NonlinearSystems
Guides
Guide to ZigangPan`NonlinearSystems`
Symbols
convert2NLsystem
emptyNLsystem
linearization
NLcalculaterelativedegree
NLdynamicextension
NLsystemblockdiagonal
NLsystemcheck
NLsystemconcatenate
NLsystemfeedback
NLsystemoperation
NLsystemparallel
simulationNLsystem
sinewavesystem
ZigangPan`NonlinearSystems`
N
L
s
y
s
t
e
m
o
p
e
r
a
t
i
o
n
n
l
s
y
s
t
e
m
2
=
N
L
s
y
s
t
e
m
o
p
e
r
a
t
i
o
n
[
n
l
s
y
s
t
e
m
,
{
'
C
o
m
m
a
n
d
s
t
r
i
n
g
'
[
,
p
a
r
a
m
e
t
e
r
]
}
]
p
e
r
f
o
r
m
s
a
n
o
p
e
r
a
t
i
o
n
o
n
t
h
e
n
o
n
l
i
n
e
a
r
n
l
s
y
s
t
e
m
.
V
a
l
i
d
c
o
m
m
a
n
d
s
t
r
i
n
g
s
i
n
c
l
u
d
e
:
V
i
e
w
,
O
r
g
a
n
i
z
e
,
O
r
g
a
n
i
z
e
a
n
d
V
i
e
w
,
D
r
o
p
a
c
t
i
v
e
i
n
p
u
t
s
,
D
r
o
p
a
c
t
i
v
e
o
u
t
p
u
t
s
,
A
d
d
a
c
t
i
v
e
i
n
p
u
t
s
,
A
d
d
a
c
t
i
v
e
o
u
t
p
u
t
s
,
R
e
o
r
d
e
r
a
c
t
i
v
e
i
n
p
u
t
s
,
R
e
o
r
d
e
r
a
c
t
i
v
e
o
u
t
p
u
t
s
,
S
e
t
a
c
t
i
v
e
i
n
p
u
t
s
,
S
e
t
a
c
t
i
v
e
o
u
t
p
u
t
s
,
D
r
o
p
c
o
n
t
r
o
l
i
n
p
u
t
s
,
D
r
o
p
d
i
s
t
u
r
b
a
n
c
e
i
n
p
u
t
s
,
D
r
o
p
m
e
a
s
u
r
e
m
e
n
t
o
u
t
p
u
t
s
,
D
r
o
p
c
o
n
t
r
o
l
l
e
d
o
u
t
p
u
t
s
,
A
d
d
c
o
n
t
r
o
l
i
n
p
u
t
s
,
A
d
d
d
i
s
t
u
r
b
a
n
c
e
i
n
p
u
t
s
,
A
d
d
m
e
a
s
u
r
e
m
e
n
t
o
u
t
p
u
t
s
,
A
d
d
c
o
n
t
r
o
l
l
e
d
o
u
t
p
u
t
s
,
D
r
o
p
i
n
p
u
t
s
,
D
r
o
p
o
u
t
p
u
t
s
,
S
t
a
t
e
t
r
a
n
s
f
o
r
m
a
t
i
o
n
,
D
r
o
p
s
t
a
t
e
s
.
Examples
(
1
)
Basic Examples
(
1
)
I
n
[
1
]
:
=
n
l
s
y
s
t
e
m
7
=
{
{
x
1
,
x
2
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
-
x
1
+
x
1
*
x
2
+
u
1
,
-
x
2
^
3
+
u
1
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
x
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
;
I
n
[
2
]
:
=
N
L
s
y
s
t
e
m
o
p
e
r
a
t
i
o
n
[
n
l
s
y
s
t
e
m
7
,
{
"
V
i
e
w
"
}
]
A
c
t
i
v
e
a
1
a
2
T
y
p
e
c
1
c
2
n
a
m
e
s
S
y
s
t
e
m
F
u
n
c
t
i
o
n
u
1
u
2
s
1
x
1
u
1
-
x
1
+
x
1
x
2
s
2
x
2
u
1
+
u
2
-
3
x
2
a
1
m
1
y
1
x
1
a
2
m
2
y
2
x
2
O
u
t
[
2
]
=
{
{
x
1
,
x
2
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
-
x
1
+
x
1
x
2
+
u
1
,
-
3
x
2
+
u
1
+
u
2
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
,
u
1
,
u
2
}
,
{
x
1
,
x
2
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
I
n
[
3
]
:
=
N
L
s
y
s
t
e
m
o
p
e
r
a
t
i
o
n
[
n
l
s
y
s
t
e
m
7
,
{
"
S
t
a
t
e
t
r
a
n
s
f
o
r
m
a
t
i
o
n
"
,
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
[
{
x
1
,
x
2
}
,
{
x
1
,
x
2
-
x
1
^
2
}
]
,
F
o
r
m
u
l
a
T
o
F
u
n
c
t
i
o
n
[
{
z
1
,
z
2
}
,
{
z
1
,
z
2
+
z
1
^
2
}
]
}
]
S
t
a
t
e
t
r
a
n
s
f
o
r
m
a
t
i
o
n
i
s
x
n
e
w
=
t
r
a
n
s
f
o
r
m
a
t
i
o
n
[
x
o
l
d
]
a
n
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
i
s
a
p
u
r
e
f
u
n
c
t
i
o
n
;
O
n
e
m
a
y
a
t
t
a
c
h
t
h
e
i
n
v
e
r
s
e
t
r
a
n
s
f
o
r
m
a
t
i
o
n
a
s
t
h
e
t
h
i
r
d
e
l
e
m
e
n
t
i
n
t
y
p
e
,
w
h
i
c
h
m
u
s
t
a
l
s
o
b
e
a
p
u
r
e
f
u
n
c
t
i
o
n
.
O
u
t
[
3
]
=
{
{
x
1
1
,
x
2
1
}
,
{
u
1
,
u
2
}
,
{
y
1
,
y
2
}
,
{
F
u
n
c
t
i
o
n
[
{
x
1
1
,
x
2
1
,
u
1
,
u
2
}
,
{
u
1
-
x
1
1
+
x
1
1
(
2
x
1
1
+
x
2
1
)
,
u
1
+
u
2
-
3
(
2
x
1
1
+
x
2
1
)
-
2
x
1
1
(
u
1
-
x
1
1
+
x
1
1
(
2
x
1
1
+
x
2
1
)
)
}
]
,
F
u
n
c
t
i
o
n
[
{
x
1
1
,
x
2
1
,
u
1
,
u
2
}
,
{
x
1
1
,
2
x
1
1
+
x
2
1
}
]
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
1
,
2
}
,
{
}
,
{
1
,
2
}
,
{
}
}
I
n
[
4
]
:
=
N
L
s
y
s
t
e
m
o
p
e
r
a
t
i
o
n
[
%
,
{
"
O
r
g
a
n
i
z
e
a
n
d
V
i
e
w
"
}
]
;
A
c
t
i
v
e
a
1
a
2
T
y
p
e
c
1
c
2
n
a
m
e
s
S
y
s
t
e
m
F
u
n
c
t
i
o
n
u
1
u
2
s
1
x
1
1
u
1
+
x
1
1
(
-
1
+
2
x
1
1
+
x
2
1
)
s
2
x
2
1
u
1
+
u
2
-
3
(
2
x
1
1
+
x
2
1
)
-
2
x
1
1
(
u
1
+
x
1
1
(
-
1
+
2
x
1
1
+
x
2
1
)
)
a
1
m
1
y
1
x
1
1
a
2
m
2
y
2
2
x
1
1
+
x
2
1
S
e
e
A
l
s
o
N
L
s
y
s
t
e
m
c
h
e
c
k
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
G
u
i
d
e
t
o
Z
i
g
a
n
g
P
a
n
`
N
o
n
l
i
n
e
a
r
S
y
s
t
e
m
s
`
"
"