Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NonlinearSystems

Guides

  • Guide to ZigangPan`NonlinearSystems`

Symbols

  • convert2NLsystem
  • emptyNLsystem
  • linearization
  • NLcalculaterelativedegree
  • NLdynamicextension
  • NLsystemblockdiagonal
  • NLsystemcheck
  • NLsystemconcatenate
  • NLsystemfeedback
  • NLsystemoperation
  • NLsystemparallel
  • simulationNLsystem
  • sinewavesystem
ZigangPan`NonlinearSystems`
NLsystemoperation
​
nlsystem2=NLsystemoperation[nlsystem,{'Commandstring'[,parameter]}]
performs an operation on the nonlinear
nlsystem
. Valid command strings include: View, Organize, Organize and View, Drop active inputs, Drop active outputs, Add active inputs, Add active outputs, Reorder active inputs, Reorder active outputs, Set active inputs, Set active outputs, Drop control inputs, Drop disturbance inputs, Drop measurement outputs, Drop controlled outputs, Add control inputs, Add disturbance inputs, Add measurement outputs, Add controlled outputs, Drop inputs, Drop outputs, State transformation, Drop states.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
nlsystem7={{x1,x2},{u1,u2},{y1,y2},{Function[{x1,x2,u1,u2},{-x1+x1*x2+u1,-x2^3+u1+u2}],Function[{x1,x2,u1,u2},{x1,x2}]},{1,2},{1,2},{1,2},{},{1,2},{}};
In[2]:=
NLsystemoperation
[nlsystem7,{"View"}]
Active
a1
a2
Type
c1
c2
names
System Function
u1
u2
s1
x1
u1-x1+x1x2
s2
x2
u1+u2-
3
x2
a1
m1
y1
x1
a2
m2
y2
x2
Out[2]=
{{x1,x2},{u1,u2},{y1,y2},{Function[{x1,x2,u1,u2},{-x1+x1x2+u1,-
3
x2
+u1+u2}],Function[{x1,x2,u1,u2},{x1,x2}]},{1,2},{1,2},{1,2},{},{1,2},{}}
In[3]:=
NLsystemoperation
[nlsystem7,{"State transformation",FormulaToFunction[{x1,x2},{x1,x2-x1^2}],FormulaToFunction[{z1,z2},{z1,z2+z1^2}]}]
State transformation is xnew = transformation[xold] and transformation is a pure function; One may attach the inverse transformation as the third element in type, which must also be a pure function.
Out[3]=
{{x11,x21},{u1,u2},{y1,y2},{Function[{x11,x21,u1,u2},{u1-x11+x11(
2
x11
+x21),u1+u2-
3
(
2
x11
+x21)
-2x11(u1-x11+x11(
2
x11
+x21))}],Function[{x11,x21,u1,u2},{x11,
2
x11
+x21}]},{1,2},{1,2},{1,2},{},{1,2},{}}
In[4]:=
NLsystemoperation
[%,{"Organize and View"}];
Active
a1
a2
Type
c1
c2
names
System Function
u1
u2
s1
x11
u1+x11(-1+
2
x11
+x21)
s2
x21
u1+u2-
3
(
2
x11
+x21)
-2x11(u1+x11(-1+
2
x11
+x21))
a1
m1
y1
x11
a2
m2
y2
2
x11
+x21
SeeAlso
NLsystemcheck
RelatedGuides
▪
Guide to ZigangPan`NonlinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com