Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NonlinearSystems

Guides

  • Guide to ZigangPan`NonlinearSystems`

Symbols

  • convert2NLsystem
  • emptyNLsystem
  • frobenius
  • linearization
  • myMatrixRank
  • NLcalculaterelativedegree
  • NLcontrollability
  • NLdynamicextension
  • NLKarmanDecomposition
  • NLobservability
  • NLsystemblockdiagonal
  • NLsystemcheck
  • NLsystemconcatenate
  • NLsystemfeedback
  • NLsystemoperation
  • NLsystemparallel
  • simulationNLsystem
  • sinewavesystem
ZigangPan`NonlinearSystems`
NLobservability
​
{nO,transformation,resultsystem}=NLobservability[nlsystem,x0] computes the the dimension of the possibly locally observable part of the nonlinear system:
nlsystem
around the state
x0
.
nlsystem
: a
nlsystem
in the 10 term representation
x0
: a desired state vector nO : dimension of the possibly locally observable part around
x0
transformation : the state transformation that brings the system into observable and unobservable parts resultsystem : the representation of the original system in new coordinates.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
nlsystem={{x1,x2,x3},{u1},{y1},{FormulaToFunction[{x1,x2,x3,u1},{x2+u1,-x2+x1*u1,x3}],FormulaToFunction[{x1,x2,x3,u1},{x1^2}]},{1},{1},{1},{},{1},{}}
Out[1]=
{{x1,x2,x3},{u1},{y1},{Function[{x1,x2,x3,u1},{u1+x2,u1x1-x2,x3}],Function[{x1,x2,x3,u1},{
2
x1
}]},{1},{1},{1},{},{1},{}}
In[2]:=
NLsystemcheck
[nlsystem]
Out[2]=
True
In[3]:=
NLobservability
[nlsystem,{0,0,0}]
State transformation is xnew = transformation[xold] and transformation is a pure function; One may attach the inverse transformation as the third element in type, which must also be a pure function.
Out[3]=
2,{2x1,2x2,x3},{x11,x21,x31},{u1},{y1},Function{x11,x21,x31,u1},2u1+
x21
2
,2
u1x11
2
-
x21
2
,x31,Function{x11,x21,x31,u1},
2
x11
4
,{1},{1},{1},{},{1},{}
SeeAlso
NLcontrollability
 
▪
NLKarmanDecomposition
RelatedGuides
▪
Guide to ZigangPan`NonlinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com