Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NonlinearSystems

Guides

  • Guide to ZigangPan`NonlinearSystems`

Symbols

  • convert2NLsystem
  • emptyNLsystem
  • linearization
  • NLcalculaterelativedegree
  • NLdynamicextension
  • NLsystemblockdiagonal
  • NLsystemcheck
  • NLsystemconcatenate
  • NLsystemfeedback
  • NLsystemoperation
  • NLsystemparallel
  • simulationNLsystem
  • sinewavesystem
ZigangPan`NonlinearSystems`
NLsystemcheck
​
NLsystemcheck
[nlsystem]
return
True
if
nlsystem
is in nonlinear system format,that is,it is a 10-term list consist of {statenames,inputnames,outputnames,{f,h},activeinputs,activeoutputs,controlinputs, disturbanceinputs,measurementoutputs,controlledoutputs} where f and h are pure functions, they are the dynamic equation and output equation,respectively. f and h are functions of Join[statenames,inputnames].
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
nlsystem7={{x1,x2},{u1,u2},{y1,y2},{Function[{x1,x2,u1,u2},{-x1+x1*x2+u1,-x2^3+u1+u2}],Function[{x1,x2,u1,u2},{x1,x2}]},{1,2},{1,2},{1,2},{},{1,2},{}};
In[2]:=
NLsystemcheck
[nlsystem7]
Out[2]=
True
SeeAlso
NLsystemoperation
 
▪
convert2NLsystem
 
▪
linearization
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com