Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
Solovay | Reprents an elementary generator |
TheSolovay | The matrix representation an elementary generator |
SolovayChains | Returns the list of all possible sequence of elementary generators |
SolovayKitae | Implements the Solovay-Kitaev algorithm |
GroupCommutator |
Symbol | |
GroupCommutator[a, b] returns the group commutator of a and b; that is, a**b**Inverse[a]**Inverse[b]. | |
GroupCommutator |
-1 | 0 |
0 | -1 |
GroupCommutator |
BalancedCommutator |
Symbol | |
BalancedCommuator[u] returns the group commuator decomposition of 2 x 2 unitary matrix u; that is, a pair of two group elements a and b such that u = GroupCommutator[a, b]. | |
0.9689945920647197`-0.18643612090113915` | 0.15825427836029116`+0.035307743526686745` |
-0.15825427836029105`+0.035307743526662085` | 0.9689945920646759`+0.18643612090129802` |
BalancedCommutator |
GroupCommutator |
0.935676-0.267733 | -0.0843935-0.213791 |
0.0843935-0.213791 | 0.935676+0.267733 |
0.935676-0.0576092 | -0.293097+0.187844 |
0.293097+0.187844 | 0.935676+0.0576092 |
0 | 0 |
0 | 0 |
BalancedCommutator |
1 | 0 |
0 | 1 |
1 | 0 |
0 | 1 |
BalancedCommutator |
GroupCommutator |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0 | 0 |
0.617676+0.193029 | 0.69249+0.318862 |
-0.69249+0.318862 | 0.617676-0.193029 |
BalancedCommutator |
GroupCommutator |
0 | 0 |
0 | 0 |
BalancedCommutator |
GroupCommutator |
0.5 | -0.866025 |
0.866025 | 0.5 |
0 | 0 |
0 | 0 |
Solovay |
Symbol | |
Solovay[k] represents the element associated with index k in the densely generating set H, T, -1 T | |
Symbol | |
TheSolovay[k] returns the matrix representation of Solovay[k]. | |