Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
| Solovay | Reprents an elementary generator | 
| TheSolovay | The matrix representation an elementary generator | 
| SolovayChains | Returns the list of all possible sequence of elementary generators | 
| SolovayKitae | Implements the Solovay-Kitaev algorithm | 
| GroupCommutator | 
|  Symbol | |
| GroupCommutator[a, b] returns the group commutator of a and b; that is, a**b**Inverse[a]**Inverse[b]. | |
| GroupCommutator | 
| -1 | 0 | 
| 0 | -1 | 
| GroupCommutator | 
| BalancedCommutator | 
|  Symbol | |
| BalancedCommuator[u] returns the group commuator decomposition of 2 x 2 unitary matrix u; that is, a pair of two group elements a and b such that u = GroupCommutator[a, b]. | |
| 0.9689945920647197`-0.18643612090113915` | 0.15825427836029116`+0.035307743526686745` | 
| -0.15825427836029105`+0.035307743526662085` | 0.9689945920646759`+0.18643612090129802` | 
| BalancedCommutator | 
| GroupCommutator | 
| 0.935676-0.267733 | -0.0843935-0.213791 | 
| 0.0843935-0.213791 | 0.935676+0.267733 | 
| 0.935676-0.0576092 | -0.293097+0.187844 | 
| 0.293097+0.187844 | 0.935676+0.0576092 | 
| 0 | 0 | 
| 0 | 0 | 
| BalancedCommutator | 
| 1 | 0 | 
| 0 | 1 | 
| 1 | 0 | 
| 0 | 1 | 
| BalancedCommutator | 
| GroupCommutator | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0 | 0 | 
| 0.617676+0.193029 | 0.69249+0.318862 | 
| -0.69249+0.318862 | 0.617676-0.193029 | 
| BalancedCommutator | 
| GroupCommutator | 
| 0 | 0 | 
| 0 | 0 | 
| BalancedCommutator | 
| GroupCommutator | 
| 0.5 | -0.866025 | 
| 0.866025 | 0.5 | 
| 0 | 0 | 
| 0 | 0 | 
| Solovay | 
|  Symbol | |
| Solovay[k] represents the element associated with index k in the densely generating set H, T,  -1 T | |
|  Symbol | |
| TheSolovay[k] returns the matrix representation of Solovay[k]. | |