Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumPlaybook
Guides
QuantumPlaybook
Tech Notes
Addition of Numbers
Baker-Hausdorff Lemma
Chiral Fermion Random Circuit
Clifford Operators: How to Test
Commutation Relations for Qubits
Entanglement Distillation
Generalized Pauli Operators: Implementation
Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
Hatano-Nelson Model: Monte Carlo Simulation
Kitaev Chain
Kitaev Random Circuit
Λ-Matter in a Cavity
Measurement of Total Pauli Z
Non-Unitary Dynamics of Quantum States
Partial Trace: Physical Meaning
Quantum Dot Systems
A Quantum Playbook
Magnetic Exchange Coupling
Solovay-Kitaev Algorithm
Spin Code
Symmetry Effects On Quantum Master Equations
Transmon: Quantum Phase Model
Transposition as a Supermap
Variational Quantum Classifier: Iris
Variational Quantum Classifier: Parity
Variational Quantum Eigensolver: Transverse-Field Ising Model
Symbols
BlochEnergy
BlochFunction
QuantumPlaybookCheckUpdate
QuantumPlaybookEdition
QuantumPlaybookUpdate
TransmonEnergy
TransmonExponent
TransmonFunction
TransmonHamiltonian
QuantumMob`Transmon`
B
l
o
c
h
E
n
e
r
g
y
B
l
o
c
h
E
n
e
r
g
y
[
ν
,
α
]
r
e
t
u
r
n
s
t
h
e
e
n
e
r
g
y
o
f
t
h
e
w
a
v
e
f
u
n
c
t
i
o
n
w
i
t
h
c
h
a
r
a
c
t
e
r
i
s
t
i
c
e
x
p
o
n
e
n
t
ν
f
o
r
t
h
e
B
l
o
c
h
H
a
m
i
l
t
o
n
i
a
n
w
i
t
h
M
a
c
C
u
m
b
e
r
p
a
r
a
m
e
t
e
r
α
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Here is an example of the dispersion relation in the charging limit. The dispersion relation resembles a quadratic curve.
I
n
[
1
]
:
=
α
=
2
.
;
d
=
0
.
0
0
5
;
f
i
g
1
a
=
L
i
s
t
P
l
o
t
T
a
b
l
e
n
+
n
u
,
B
l
o
c
h
E
n
e
r
g
y
[
n
+
n
u
,
α
]
,
{
n
,
0
,
2
,
1
/
2
}
,
{
n
u
,
0
,
0
.
5
-
d
,
d
}
,
J
o
i
n
e
d
T
r
u
e
;
f
i
g
1
b
=
L
i
s
t
P
l
o
t
T
a
b
l
e
n
+
n
u
,
B
l
o
c
h
E
n
e
r
g
y
[
n
+
n
u
,
α
]
,
{
n
,
0
,
-
2
,
-
1
/
2
}
,
{
n
u
,
0
,
-
0
.
5
+
d
,
-
d
}
,
J
o
i
n
e
d
T
r
u
e
;
f
i
g
1
=
S
h
o
w
[
{
f
i
g
1
a
,
f
i
g
1
b
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ν
"
,
"
E
n
e
r
g
y
"
}
,
P
l
o
t
R
a
n
g
e
A
l
l
]
O
u
t
[
1
]
=
Here is an example of the dispersion relation in the Josephson limit. The allowed values of energy are almost discrete and are similar to those of simple harmonic oscillator.
I
n
[
2
]
:
=
α
=
0
.
5
;
d
=
0
.
0
0
5
;
f
i
g
2
a
=
L
i
s
t
P
l
o
t
T
a
b
l
e
n
+
n
u
,
B
l
o
c
h
E
n
e
r
g
y
[
n
+
n
u
,
α
]
,
{
n
,
0
,
2
,
1
/
2
}
,
{
n
u
,
0
,
0
.
5
-
d
,
d
}
,
J
o
i
n
e
d
T
r
u
e
;
f
i
g
2
b
=
L
i
s
t
P
l
o
t
T
a
b
l
e
n
+
n
u
,
B
l
o
c
h
E
n
e
r
g
y
[
n
+
n
u
,
α
]
,
{
n
,
0
,
-
2
,
-
1
/
2
}
,
{
n
u
,
0
,
-
0
.
5
+
d
,
-
d
}
,
J
o
i
n
e
d
T
r
u
e
;
f
i
g
2
=
S
h
o
w
[
{
f
i
g
2
a
,
f
i
g
2
b
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ν
"
,
"
E
n
e
r
g
y
"
}
,
P
l
o
t
R
a
n
g
e
A
l
l
]
O
u
t
[
2
]
=
S
e
e
A
l
s
o
B
l
o
c
h
F
u
n
c
t
i
o
n
▪
T
r
a
n
s
m
o
n
E
n
e
r
g
y
▪
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
T
e
c
h
N
o
t
e
s
▪
T
r
a
n
s
m
o
n
:
Q
u
a
n
t
u
m
P
h
a
s
e
M
o
d
e
l
▪
M
a
t
h
i
e
u
a
n
d
R
e
l
a
t
e
d
F
u
n
c
t
i
o
n
s
▪
Q
u
a
n
t
u
m
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
s
w
i
t
h
Q
3
▪
Q
u
a
n
t
u
m
M
a
n
y
-
B
o
d
y
S
y
s
t
e
m
s
w
i
t
h
Q
3
▪
Q
u
a
n
t
u
m
S
p
i
n
S
y
s
t
e
m
s
w
i
t
h
Q
3
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Q
u
a
n
t
u
m
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
s
▪
Q
u
a
n
t
u
m
M
a
n
y
-
B
o
d
y
S
y
s
t
e
m
s
▪
Q
u
a
n
t
u
m
S
p
i
n
S
y
s
t
e
m
s
R
e
l
a
t
e
d
L
i
n
k
s
▪
G
.
B
l
a
n
c
h
(
1
9
7
2
)
,
"
M
a
t
h
i
e
u
F
u
n
c
t
i
o
n
s
"
i
n
H
a
n
d
b
o
o
k
o
f
M
a
t
h
e
m
a
t
i
c
a
l
F
u
n
c
t
i
o
n
s
w
i
t
h
F
o
r
m
u
l
a
s
,
G
r
a
p
h
s
,
a
n
d
M
a
t
h
e
m
a
t
i
c
a
l
T
a
b
l
e
s
,
e
d
i
t
e
d
b
y
M
.
A
b
r
a
m
o
w
i
t
z
a
n
d
I
.
A
.
S
t
e
g
u
n
(
J
o
h
n
W
i
l
e
y
&
S
o
n
s
,
1
9
7
2
)
.
"
"