Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumPlaybook

Guides

  • QuantumPlaybook

Tech Notes

  • Addition of Numbers
  • Baker-Hausdorff Lemma
  • Chiral Fermion Random Circuit
  • Clifford Operators: How to Test
  • Commutation Relations for Qubits
  • Entanglement Distillation
  • Generalized Pauli Operators: Implementation
  • Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
  • Hatano-Nelson Model: Monte Carlo Simulation
  • Kitaev Chain
  • Kitaev Random Circuit
  • Λ-Matter in a Cavity
  • Measurement of Total Pauli Z
  • Non-Unitary Dynamics of Quantum States
  • Partial Trace: Physical Meaning
  • Quantum Dot Systems
  • A Quantum Playbook
  • Magnetic Exchange Coupling
  • Solovay-Kitaev Algorithm
  • Spin Code
  • Symmetry Effects On Quantum Master Equations
  • Transmon: Quantum Phase Model
  • Transposition as a Supermap
  • Variational Quantum Classifier: Iris
  • Variational Quantum Classifier: Parity
  • Variational Quantum Eigensolver: Transverse-Field Ising Model

Symbols

  • BlochEnergy
  • BlochFunction
  • QuantumPlaybookCheckUpdate
  • QuantumPlaybookEdition
  • QuantumPlaybookUpdate
  • TransmonEnergy
  • TransmonExponent
  • TransmonFunction
  • TransmonHamiltonian
QuantumMob/Transmon`
TransmonFunction
​
TransmonFunction
[n,α,q]
represents the wave function of the
n
-th excited state of the dimensionless transmon Hamiltonian for MacCumber parameter α and dimensionless gate charge
q
, with
n=0
referring to the ground state.
​
​
TransmonFunction
[n,α,q,x]
or
TransmonFunction
[n,α,q][x]
​ returns the value of the wave function at
x
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In the Josephson limit (
α≪1
), transmon behaves like a harmonic oscillator. In the following, the wavefunctions have been shifted by amount proportional to its energy.
In[1]:=
PlotEvaluate@Table4n+Re@
TransmonFunction
[n,0.3,0,x*Pi],{n,0,3},{x,-1,1},​​FrameLabel{"ϕ / π",ψ},​​PlotLegendsAutomatic
Out[1]=
In[2]:=
ReImPlotEvaluate@Table4n(1+I)+
TransmonFunction
[n,0.3,0.001,x*Pi],{n,0,3},{x,-1,1},​​FrameLabel{"ϕ / π",ψ}
Out[2]=
In[3]:=
ReImPlotEvaluate@Table4n(1+I)+
TransmonFunction
[n,0.3,1/2,x*Pi],{n,0,3},{x,-1,1},​​FrameLabel{"ϕ / π",ψ}
Out[3]=
In[4]:=
ReImPlotEvaluate@Table4n(1+I)+
TransmonFunction
[n,0.3,0.4999999,x*Pi],{n,0,3},{x,-1,1},​​FrameLabel{"ϕ / π",ψ}
Out[4]=
In the charging limit, transmon behaves like a free particle in a ring of circumference 2π.
In[5]:=
PlotEvaluate@Table4n+Re@
TransmonFunction
[n,2.,0,x*Pi],{n,0,3},{x,-1,1},​​FrameLabel{"ϕ / π",ψ},​​PlotLegendsAutomatic
Out[5]=
In[6]:=
ReImPlot
TransmonFunction
[1,0.3,0.1,x*Pi],{x,-1,1},​​FrameLabel{"ϕ / π",ψ},PlotRangeAll
Out[6]=
In[7]:=
ReImPlot
TransmonFunction
[1,0.3,0.0001,x*Pi],{x,-1,1},​​FrameLabel{"ϕ / π",ψ},PlotRangeAll
Out[7]=
In[8]:=
ReImPlot
TransmonFunction
[1,0.3,1/2,x*Pi],{x,-1,1},​​FrameLabel{"ϕ / π",ψ},PlotRangeAll
Out[8]=
In[9]:=
ReImPlot
TransmonFunction
[1,0.3,0.49999,x*Pi],{x,-1,1},​​FrameLabel{"ϕ / π",ψ},PlotRangeAll
Out[9]=

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com