Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumPlaybook
Guides
QuantumPlaybook
Tech Notes
Addition of Numbers
Baker-Hausdorff Lemma
Chiral Fermion Random Circuit
Clifford Operators: How to Test
Commutation Relations for Qubits
Entanglement Distillation
Generalized Pauli Operators: Implementation
Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
Hatano-Nelson Model: Monte Carlo Simulation
Kitaev Chain
Kitaev Random Circuit
Λ-Matter in a Cavity
Measurement of Total Pauli Z
Non-Unitary Dynamics of Quantum States
Partial Trace: Physical Meaning
Quantum Dot Systems
A Quantum Playbook
Magnetic Exchange Coupling
Solovay-Kitaev Algorithm
Spin Code
Symmetry Effects On Quantum Master Equations
Transmon: Quantum Phase Model
Transposition as a Supermap
Variational Quantum Classifier: Iris
Variational Quantum Classifier: Parity
Variational Quantum Eigensolver: Transverse-Field Ising Model
Symbols
BlochEnergy
BlochFunction
QuantumPlaybookCheckUpdate
QuantumPlaybookEdition
QuantumPlaybookUpdate
TransmonEnergy
TransmonExponent
TransmonFunction
TransmonHamiltonian
QuantumMob/Transmon`
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
α
,
q
]
r
e
p
r
e
s
e
n
t
s
t
h
e
w
a
v
e
f
u
n
c
t
i
o
n
o
f
t
h
e
n
-
t
h
e
x
c
i
t
e
d
s
t
a
t
e
o
f
t
h
e
d
i
m
e
n
s
i
o
n
l
e
s
s
t
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
f
o
r
M
a
c
C
u
m
b
e
r
p
a
r
a
m
e
t
e
r
α
a
n
d
d
i
m
e
n
s
i
o
n
l
e
s
s
g
a
t
e
c
h
a
r
g
e
q
,
w
i
t
h
n
=
0
r
e
f
e
r
r
i
n
g
t
o
t
h
e
g
r
o
u
n
d
s
t
a
t
e
.
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
α
,
q
,
x
]
o
r
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
α
,
q
]
[
x
]
r
e
t
u
r
n
s
t
h
e
v
a
l
u
e
o
f
t
h
e
w
a
v
e
f
u
n
c
t
i
o
n
a
t
x
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
In the Josephson limit (
α
≪
1
), transmon behaves like a harmonic oscillator. In the following, the wavefunctions have been shifted by amount proportional to its energy.
I
n
[
1
]
:
=
P
l
o
t
E
v
a
l
u
a
t
e
@
T
a
b
l
e
4
n
+
R
e
@
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
0
.
3
,
0
,
x
*
P
i
]
,
{
n
,
0
,
3
}
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
L
e
g
e
n
d
s
A
u
t
o
m
a
t
i
c
O
u
t
[
1
]
=
I
n
[
2
]
:
=
R
e
I
m
P
l
o
t
E
v
a
l
u
a
t
e
@
T
a
b
l
e
4
n
(
1
+
I
)
+
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
0
.
3
,
0
.
0
0
1
,
x
*
P
i
]
,
{
n
,
0
,
3
}
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
O
u
t
[
2
]
=
I
n
[
3
]
:
=
R
e
I
m
P
l
o
t
E
v
a
l
u
a
t
e
@
T
a
b
l
e
4
n
(
1
+
I
)
+
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
0
.
3
,
1
/
2
,
x
*
P
i
]
,
{
n
,
0
,
3
}
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
O
u
t
[
3
]
=
I
n
[
4
]
:
=
R
e
I
m
P
l
o
t
E
v
a
l
u
a
t
e
@
T
a
b
l
e
4
n
(
1
+
I
)
+
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
0
.
3
,
0
.
4
9
9
9
9
9
9
,
x
*
P
i
]
,
{
n
,
0
,
3
}
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
O
u
t
[
4
]
=
In the charging limit, transmon behaves like a free particle in a ring of circumference 2
π
.
I
n
[
5
]
:
=
P
l
o
t
E
v
a
l
u
a
t
e
@
T
a
b
l
e
4
n
+
R
e
@
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
2
.
,
0
,
x
*
P
i
]
,
{
n
,
0
,
3
}
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
L
e
g
e
n
d
s
A
u
t
o
m
a
t
i
c
O
u
t
[
5
]
=
I
n
[
6
]
:
=
R
e
I
m
P
l
o
t
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
1
,
0
.
3
,
0
.
1
,
x
*
P
i
]
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
R
a
n
g
e
A
l
l
O
u
t
[
6
]
=
I
n
[
7
]
:
=
R
e
I
m
P
l
o
t
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
1
,
0
.
3
,
0
.
0
0
0
1
,
x
*
P
i
]
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
R
a
n
g
e
A
l
l
O
u
t
[
7
]
=
I
n
[
8
]
:
=
R
e
I
m
P
l
o
t
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
1
,
0
.
3
,
1
/
2
,
x
*
P
i
]
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
R
a
n
g
e
A
l
l
O
u
t
[
8
]
=
I
n
[
9
]
:
=
R
e
I
m
P
l
o
t
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
1
,
0
.
3
,
0
.
4
9
9
9
9
,
x
*
P
i
]
,
{
x
,
-
1
,
1
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
ψ
}
,
P
l
o
t
R
a
n
g
e
A
l
l
O
u
t
[
9
]
=