Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumPlaybook

Guides

  • QuantumPlaybook

Tech Notes

  • Addition of Numbers
  • Baker-Hausdorff Lemma
  • Chiral Fermion Random Circuit
  • Clifford Operators: How to Test
  • Commutation Relations for Qubits
  • Entanglement Distillation
  • Generalized Pauli Operators: Implementation
  • Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
  • Hatano-Nelson Model: Monte Carlo Simulation
  • Kitaev Chain
  • Kitaev Random Circuit
  • Λ-Matter in a Cavity
  • Measurement of Total Pauli Z
  • Non-Unitary Dynamics of Quantum States
  • Partial Trace: Physical Meaning
  • Quantum Dot Systems
  • A Quantum Playbook
  • Magnetic Exchange Coupling
  • Solovay-Kitaev Algorithm
  • Spin Code
  • Symmetry Effects On Quantum Master Equations
  • Transmon: Quantum Phase Model
  • Transposition as a Supermap
  • Variational Quantum Classifier: Iris
  • Variational Quantum Classifier: Parity
  • Variational Quantum Eigensolver: Transverse-Field Ising Model

Symbols

  • BlochEnergy
  • BlochFunction
  • QuantumPlaybookCheckUpdate
  • QuantumPlaybookEdition
  • QuantumPlaybookUpdate
  • TransmonEnergy
  • TransmonExponent
  • TransmonFunction
  • TransmonHamiltonian
QuantumMob`Transmon`
TransmonHamiltonian
​
TransmonHamiltonian
[α,q,x]
represents the transmon Hamiltonian in the
x
-space representation for MacCumber parameter α and dimensionless gate charge
q
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Consider a transmon in the charging limit and examine the 2nd excited state.
In[1]:=
α=2.;(*MacCumberparameter*)​​q=0.3;(*dimenionlessgatecharge*)​​n=2;(*referringtothe2ndexcitedstate*)​​sol[x_]=
TransmonFunction
[n,α,q,x];​​ReImPlot[sol[x*Pi],{x,-2,2},​​FrameLabel{"ϕ / π","ψ(ϕ)"}]
Out[1]=
It satisfies the Schrödinger equation.
In[2]:=
eqn[x_]=
TransmonHamiltonian
[α,q,x]@sol[x]-
TransmonEnergy
[n,α,q]*sol[x]//Simplify;
In[3]:=
ReImPlot[Chop@eqn[x*Pi],{x,-2,2},​​FrameLabel{"ϕ / π","deviation"}]
Out[3]=
Now, consider a transmon in the Josephson limit and examine the 1st excited state.
In[4]:=
α=0.5;(*MacCumberparameter*)​​q=0.3;(*dimenionlessgatecharge*)​​n=1;(*referringtothe1stexcitedstate*)​​sol[x_]=
TransmonFunction
[n,α,q,x];​​ReImPlot[sol[x*Pi],{x,-2,2},​​FrameLabel{"ϕ / π","ψ(ϕ)"}]
Out[4]=
It satisfies the Schrödinger equation.
In[5]:=
eqn[x_]=
TransmonHamiltonian
[α,q,x]@sol[x]-
TransmonEnergy
[n,α,q]*sol[x]//Simplify;
In[6]:=
ReImPlot[Chop@eqn[x*Pi],{x,-2,2},​​FrameLabel{"ϕ / π","deviation"}]
Out[6]=
SeeAlso
TransmonEnergy
 
▪
TransmonFunction
 
▪
BlochEnergy
 
▪
BlochFunction
TechNotes
▪
Transmon: Quantum Phase Model
▪
Mathieu and Related Functions
▪
Quantum Information Systems with Q3
▪
Quantum Many-Body Systems with Q3
▪
Quantum Spin Systems with Q3
RelatedGuides
▪
Quantum Information Systems
▪
Quantum Many-Body Systems
▪
Quantum Spin Systems
RelatedLinks
▪
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999)
, "Coherent control of macroscopic quantum states in a single-Cooper-pair box."
▪
J. Koch
, "Charge-insensitive qubit design derived from the Cooper pair box."
▪
G. Blanch (1972)
, "Mathieu Functions" in
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by M. Abramowitz and I. A. Stegun (John Wiley & Sons, 1972).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com