Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
QuantumPlaybook
Guides
QuantumPlaybook
Tech Notes
Addition of Numbers
Baker-Hausdorff Lemma
Chiral Fermion Random Circuit
Clifford Operators: How to Test
Commutation Relations for Qubits
Entanglement Distillation
Generalized Pauli Operators: Implementation
Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
Hatano-Nelson Model: Monte Carlo Simulation
Kitaev Chain
Kitaev Random Circuit
Λ-Matter in a Cavity
Measurement of Total Pauli Z
Non-Unitary Dynamics of Quantum States
Partial Trace: Physical Meaning
Quantum Dot Systems
A Quantum Playbook
Magnetic Exchange Coupling
Solovay-Kitaev Algorithm
Spin Code
Symmetry Effects On Quantum Master Equations
Transmon: Quantum Phase Model
Transposition as a Supermap
Variational Quantum Classifier: Iris
Variational Quantum Classifier: Parity
Variational Quantum Eigensolver: Transverse-Field Ising Model
Symbols
BlochEnergy
BlochFunction
QuantumPlaybookCheckUpdate
QuantumPlaybookEdition
QuantumPlaybookUpdate
TransmonEnergy
TransmonExponent
TransmonFunction
TransmonHamiltonian
QuantumMob`Transmon`
T
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
T
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
[
α
,
q
,
x
]
r
e
p
r
e
s
e
n
t
s
t
h
e
t
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
i
n
t
h
e
x
-
s
p
a
c
e
r
e
p
r
e
s
e
n
t
a
t
i
o
n
f
o
r
M
a
c
C
u
m
b
e
r
p
a
r
a
m
e
t
e
r
α
a
n
d
d
i
m
e
n
s
i
o
n
l
e
s
s
g
a
t
e
c
h
a
r
g
e
q
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
1
)
Basic Examples
(
1
)
Consider a transmon in the charging limit and examine the 2nd excited state.
I
n
[
1
]
:
=
α
=
2
.
;
(
*
M
a
c
C
u
m
b
e
r
p
a
r
a
m
e
t
e
r
*
)
q
=
0
.
3
;
(
*
d
i
m
e
n
i
o
n
l
e
s
s
g
a
t
e
c
h
a
r
g
e
*
)
n
=
2
;
(
*
r
e
f
e
r
r
i
n
g
t
o
t
h
e
2
n
d
e
x
c
i
t
e
d
s
t
a
t
e
*
)
s
o
l
[
x
_
]
=
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
α
,
q
,
x
]
;
R
e
I
m
P
l
o
t
[
s
o
l
[
x
*
P
i
]
,
{
x
,
-
2
,
2
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
"
ψ
(
ϕ
)
"
}
]
O
u
t
[
1
]
=
It satisfies the Schrödinger equation.
I
n
[
2
]
:
=
e
q
n
[
x
_
]
=
T
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
[
α
,
q
,
x
]
@
s
o
l
[
x
]
-
T
r
a
n
s
m
o
n
E
n
e
r
g
y
[
n
,
α
,
q
]
*
s
o
l
[
x
]
/
/
S
i
m
p
l
i
f
y
;
I
n
[
3
]
:
=
R
e
I
m
P
l
o
t
[
C
h
o
p
@
e
q
n
[
x
*
P
i
]
,
{
x
,
-
2
,
2
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
"
d
e
v
i
a
t
i
o
n
"
}
]
O
u
t
[
3
]
=
Now, consider a transmon in the Josephson limit and examine the 1st excited state.
I
n
[
4
]
:
=
α
=
0
.
5
;
(
*
M
a
c
C
u
m
b
e
r
p
a
r
a
m
e
t
e
r
*
)
q
=
0
.
3
;
(
*
d
i
m
e
n
i
o
n
l
e
s
s
g
a
t
e
c
h
a
r
g
e
*
)
n
=
1
;
(
*
r
e
f
e
r
r
i
n
g
t
o
t
h
e
1
s
t
e
x
c
i
t
e
d
s
t
a
t
e
*
)
s
o
l
[
x
_
]
=
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
[
n
,
α
,
q
,
x
]
;
R
e
I
m
P
l
o
t
[
s
o
l
[
x
*
P
i
]
,
{
x
,
-
2
,
2
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
"
ψ
(
ϕ
)
"
}
]
O
u
t
[
4
]
=
It satisfies the Schrödinger equation.
I
n
[
5
]
:
=
e
q
n
[
x
_
]
=
T
r
a
n
s
m
o
n
H
a
m
i
l
t
o
n
i
a
n
[
α
,
q
,
x
]
@
s
o
l
[
x
]
-
T
r
a
n
s
m
o
n
E
n
e
r
g
y
[
n
,
α
,
q
]
*
s
o
l
[
x
]
/
/
S
i
m
p
l
i
f
y
;
I
n
[
6
]
:
=
R
e
I
m
P
l
o
t
[
C
h
o
p
@
e
q
n
[
x
*
P
i
]
,
{
x
,
-
2
,
2
}
,
F
r
a
m
e
L
a
b
e
l
{
"
ϕ
/
π
"
,
"
d
e
v
i
a
t
i
o
n
"
}
]
O
u
t
[
6
]
=
S
e
e
A
l
s
o
T
r
a
n
s
m
o
n
E
n
e
r
g
y
▪
T
r
a
n
s
m
o
n
F
u
n
c
t
i
o
n
▪
B
l
o
c
h
E
n
e
r
g
y
▪
B
l
o
c
h
F
u
n
c
t
i
o
n
T
e
c
h
N
o
t
e
s
▪
T
r
a
n
s
m
o
n
:
Q
u
a
n
t
u
m
P
h
a
s
e
M
o
d
e
l
▪
M
a
t
h
i
e
u
a
n
d
R
e
l
a
t
e
d
F
u
n
c
t
i
o
n
s
▪
Q
u
a
n
t
u
m
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
s
w
i
t
h
Q
3
▪
Q
u
a
n
t
u
m
M
a
n
y
-
B
o
d
y
S
y
s
t
e
m
s
w
i
t
h
Q
3
▪
Q
u
a
n
t
u
m
S
p
i
n
S
y
s
t
e
m
s
w
i
t
h
Q
3
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
Q
u
a
n
t
u
m
I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m
s
▪
Q
u
a
n
t
u
m
M
a
n
y
-
B
o
d
y
S
y
s
t
e
m
s
▪
Q
u
a
n
t
u
m
S
p
i
n
S
y
s
t
e
m
s
R
e
l
a
t
e
d
L
i
n
k
s
▪
Y
.
N
a
k
a
m
u
r
a
,
Y
.
A
.
P
a
s
h
k
i
n
,
a
n
d
J
.
S
.
T
s
a
i
,
N
a
t
u
r
e
3
9
8
,
7
8
6
(
1
9
9
9
)
,
"
C
o
h
e
r
e
n
t
c
o
n
t
r
o
l
o
f
m
a
c
r
o
s
c
o
p
i
c
q
u
a
n
t
u
m
s
t
a
t
e
s
i
n
a
s
i
n
g
l
e
-
C
o
o
p
e
r
-
p
a
i
r
b
o
x
.
"
▪
J
.
K
o
c
h
,
"
C
h
a
r
g
e
-
i
n
s
e
n
s
i
t
i
v
e
q
u
b
i
t
d
e
s
i
g
n
d
e
r
i
v
e
d
f
r
o
m
t
h
e
C
o
o
p
e
r
p
a
i
r
b
o
x
.
"
▪
G
.
B
l
a
n
c
h
(
1
9
7
2
)
,
"
M
a
t
h
i
e
u
F
u
n
c
t
i
o
n
s
"
i
n
H
a
n
d
b
o
o
k
o
f
M
a
t
h
e
m
a
t
i
c
a
l
F
u
n
c
t
i
o
n
s
w
i
t
h
F
o
r
m
u
l
a
s
,
G
r
a
p
h
s
,
a
n
d
M
a
t
h
e
m
a
t
i
c
a
l
T
a
b
l
e
s
,
e
d
i
t
e
d
b
y
M
.
A
b
r
a
m
o
w
i
t
z
a
n
d
I
.
A
.
S
t
e
g
u
n
(
J
o
h
n
W
i
l
e
y
&
S
o
n
s
,
1
9
7
2
)
.
"
"