Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumPlaybook

Guides

  • QuantumPlaybook

Tech Notes

  • Addition of Numbers
  • Baker-Hausdorff Lemma
  • Chiral Fermion Random Circuit
  • Clifford Operators: How to Test
  • Commutation Relations for Qubits
  • Entanglement Distillation
  • Generalized Pauli Operators: Implementation
  • Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
  • Hatano-Nelson Model: Monte Carlo Simulation
  • Kitaev Chain
  • Kitaev Random Circuit
  • Λ-Matter in a Cavity
  • Measurement of Total Pauli Z
  • Non-Unitary Dynamics of Quantum States
  • Partial Trace: Physical Meaning
  • Quantum Dot Systems
  • A Quantum Playbook
  • Magnetic Exchange Coupling
  • Solovay-Kitaev Algorithm
  • Spin Code
  • Symmetry Effects On Quantum Master Equations
  • Transmon: Quantum Phase Model
  • Transposition as a Supermap
  • Variational Quantum Classifier: Iris
  • Variational Quantum Classifier: Parity
  • Variational Quantum Eigensolver: Transverse-Field Ising Model

Symbols

  • BlochEnergy
  • BlochFunction
  • QuantumPlaybookCheckUpdate
  • QuantumPlaybookEdition
  • QuantumPlaybookUpdate
  • TransmonEnergy
  • TransmonExponent
  • TransmonFunction
  • TransmonHamiltonian
Kitaev Chain
Spectral Properties
Connection to the SSH Chain
Majorana Representation
​
The Kitaev chain is a prototype example of the topological superconductor. Here, we demonstrate how to examine its properties using
Q3
. See Kitaev (2001), Kitaev's original, for technical details of the model.
FockNumber
or
Q
Number operator
FockHopping
or
Hop
Constructs the hopping Hamiltonian terms
FockPairing
or
Pair
Constructs the pairing Hamiltonian terms
ToMajorana
Converts Dirac fermions to Majorana fermions.
ToDirac
Converts Majorana fermions to Dirac fermions.
GraphForm
Visualizes a non-interacting Hamiltonian or corresponding matrix in a graph.
ChiralGraphForm
Visualizes the off-diagonal block of a matrix with chiral symmetry.
Some useful functions to study the Kitaev chain.
Load Q3.
In[1]:=
Needs["QuantumMob`Q3`"]
Consider some local fermion modes.
In[3]:=
Let[Fermion,c]
In[4]:=
$L=5;
In[5]:=
cc=c[Range[1,$L]]​​cccc=Join[cc,Dagger@cc]
Out[5]=
{
c
1
,
c
2
,
c
3
,
c
4
,
c
5
}
Out[6]=

c
1
,
c
2
,
c
3
,
c
4
,
c
5
,
†
c
1
,
†
c
2
,
†
c
3
,
†
c
4
,
†
c
5

Let t, μ, and Δ denote the hopping amplitude, chemical potential, and pairing potential, respectively.
In[4]:=
Let[Real,t,μ,Δ]
Construct the model Hamiltonian.
In[7]:=
H0=-μ*Q[cc]​​Hhop=-t*PlusDagger@FockHopping[cc]​​Hpair=Δ*PlusDagger@FockPairing[cc]​​HH=H0+Hhop+Hpair
Out[7]=
-μ
†
c
1
c
1
+
†
c
2
c
2
+
†
c
3
c
3
+
†
c
4
c
4
+
†
c
5
c
5

Out[8]=
-t
†
c
1
c
2
+
†
c
2
c
1
+
†
c
2
c
3
+
†
c
3
c
2
+
†
c
3
c
4
+
†
c
4
c
3
+
†
c
4
c
5
+
†
c
5
c
4

Out[9]=
Δ-
c
2
c
1
-
c
3
c
2
-
c
4
c
3
-
c
5
c
4
-
†
c
1
†
c
2
-
†
c
2
†
c
3
-
†
c
3
†
c
4
-
†
c
4
†
c
5

Out[10]=
Take a look at the connectivity of the model. Here, the black thin lines indicate single-particle tunneling and the red thick lines represent the p-wave pairing.
In[11]:=
GraphForm[HH]
Out[11]=
Spectral Properties
To investigate the quasi-particle spectrum by means of the Bogoliubov-de Gennes (BdG) equation, obtain the single-particle BdG Hamiltonian.
In[12]:=
matK=CoefficientTensor[HH,Dagger@cccc,cccc];​​ArrayShort[matK,"Size"8]
Out[13]//MatrixForm=
-
μ
2
-
t
2
0
0
0
0
-
Δ
2
0
…
-
t
2
-
μ
2
-
t
2
0
0
Δ
2
0
-
Δ
2
…
0
-
t
2
-
μ
2
-
t
2
0
0
Δ
2
0
…
0
0
-
t
2
-
μ
2
-
t
2
0
0
Δ
2
…
0
0
0
-
t
2
-
μ
2
0
0
0
…
0
Δ
2
0
0
0
μ
2
t
2
0
…
-
Δ
2
0
Δ
2
0
0
t
2
μ
2
t
2
…
0
-
Δ
2
0
Δ
2
0
0
t
2
μ
2
…
…
…
…
…
…
…
…
…
…
Now, study the quasi-particle energy spectrum of the model. Be aware of the finite size effects.
In[14]:=
KK[a_,b_,c_]:=Block[{μ=a,t=b,Δ=c},SparseArray@ArrayRules@matK]
In[15]:=
Manipulate[​​Module[​​{eval=Table[Sort@Eigenvalues[KK[μ,1.,del]],{μ,0,4,0.02}]},​​ListLinePlot[Transpose@eval,​​AxesNone,​​FrameTrue,​​FrameLabel{"μ / t","Eenergy / t"},​​DataRange{0,4}]​​],​​{{del,1,"Δ"},0.5,2,0.1},​​SaveDefinitionsTrue]
Out[15]=
​
Δ
Majorana Representation
In this section, the Kitaev chain is expressed in terms of Majorana modes. The Majorana representation clearly reveals the chiral symmetry in the Kitaev chain.
Consider Majorana modes twice as many as the Dirac fermion modes in the above.
In[71]:=
Let[Majorana,a]
In[72]:=
aa=a@Range[2*$L]
Out[72]=
{
a
1
,
a
2
,
a
3
,
a
4
,
a
5
,
a
6
,
a
7
,
a
8
,
a
9
,
a
10
}
Rewrite the Hamiltonian in terms of the Majorana fermions.
In[80]:=
MM=ToMajorana[HH,ccaa]
Out[80]=
-
5μ
2
-
1
2
μ
a
1
a
2
-
1
2
(t-Δ)
a
1
a
4
+
1
2
(t+Δ)
a
2
a
3
-
1
2
μ
a
3
a
4
-
1
2
(t-Δ)
a
3
a
6
+
1
2
(t+Δ)
a
4
a
5
-
1
2
μ
a
5
a
6
-
1
2
(t-Δ)
a
5
a
8
+
1
2
(t+Δ)
a
6
a
7
-
1
2
μ
a
7
a
8
-
1
2
(t-Δ)
a
7
a
10
+
1
2
(t+Δ)
a
8
a
9
-
1
2
μ
a
9
a
10
Examine the connectivity through the single-particle Hamiltonian.
In[81]:=
matM=CoefficientTensor[MM,aa,aa];​​ArrayShort[matM,"Size"8]
Out[82]//MatrixForm=
0
-
μ
4
0
-
t
4
+
Δ
4
0
0
0
0
…
μ
4
0
t
4
+
Δ
4
0
0
0
0
0
…
0
-
t
4
-
Δ
4
0
-
μ
4
0
-
t
4
+
Δ
4
0
0
…
t
4
-
Δ
4
0
μ
4
0
t
4
+
Δ
4
0
0
0
…
0
0
0
-
t
4
-
Δ
4
0
-
μ
4
0
-
t
4
+
Δ
4
…
0
0
t
4
-
Δ
4
0
μ
4
0
t
4
+
Δ
4
0
…
0
0
0
0
0
-
t
4
-
Δ
4
0
-
μ
4
…
0
0
0
0
t
4
-
Δ
4
0
μ
4
0
…
…
…
…
…
…
…
…
…
…
Examine the connectivity.
The above graph clearly shows the chiral (i.e. sublattice) symmetry. To make it clearer, rearrange the Majorana modes.
The block-off diagonal structure of the above matrix demonstrates the chiral symmetry.

Back to General Case

Motivated by the above special case, we now examine again the general case with the rearranged Majorana modes. The chiral symmetry is clear now.
Connection to the SSH Chain
Consider two sets of Majorana modes.
Construct a two copies of the Kitaev chain.
Now, fuse pairs of Majorana fermions across the two copies of the Kitaev chain to form Dirac fermions.
Fuse the pairs of Majorana fermions across the two Kitaev chains. That is, rewrite the Hamiltonian for the double Kitaev chain in terms of Dirac fermions.

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com