Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
Kitaev Chain |
Number operator | |
Constructs the hopping Hamiltonian terms | |
Constructs the pairing Hamiltonian terms | |
Converts Dirac fermions to Majorana fermions. | |
Converts Majorana fermions to Dirac fermions. | |
Visualizes a non-interacting Hamiltonian or corresponding matrix in a graph. | |
Visualizes the off-diagonal block of a matrix with chiral symmetry. |
- μ 2 | - t 2 | 0 | 0 | 0 | 0 | - Δ 2 | 0 | … |
- t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | 0 | - Δ 2 | … |
0 | - t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | 0 | … |
0 | 0 | - t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | … |
0 | 0 | 0 | - t 2 | - μ 2 | 0 | 0 | 0 | … |
0 | Δ 2 | 0 | 0 | 0 | μ 2 | t 2 | 0 | … |
- Δ 2 | 0 | Δ 2 | 0 | 0 | t 2 | μ 2 | t 2 | … |
0 | - Δ 2 | 0 | Δ 2 | 0 | 0 | t 2 | μ 2 | … |
… | … | … | … | … | … | … | … | … |
| |||||||
|
0 | - μ 4 | 0 | - t 4 Δ 4 | 0 | 0 | 0 | 0 | … |
μ 4 | 0 | t 4 Δ 4 | 0 | 0 | 0 | 0 | 0 | … |
0 | - t 4 Δ 4 | 0 | - μ 4 | 0 | - t 4 Δ 4 | 0 | 0 | … |
t 4 Δ 4 | 0 | μ 4 | 0 | t 4 Δ 4 | 0 | 0 | 0 | … |
0 | 0 | 0 | - t 4 Δ 4 | 0 | - μ 4 | 0 | - t 4 Δ 4 | … |
0 | 0 | t 4 Δ 4 | 0 | μ 4 | 0 | t 4 Δ 4 | 0 | … |
0 | 0 | 0 | 0 | 0 | - t 4 Δ 4 | 0 | - μ 4 | … |
0 | 0 | 0 | 0 | t 4 Δ 4 | 0 | μ 4 | 0 | … |
… | … | … | … | … | … | … | … | … |