Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
| Kitaev Chain | 
| Number operator | |
| Constructs the hopping Hamiltonian terms | |
| Constructs the pairing Hamiltonian terms | |
| Converts Dirac fermions to Majorana fermions. | |
| Converts Majorana fermions to Dirac fermions.  | |
| Visualizes a non-interacting Hamiltonian or corresponding matrix in a graph. | |
| Visualizes the off-diagonal block of a matrix with chiral symmetry. | 
| - μ 2 | - t 2 | 0 | 0 | 0 | 0 | - Δ 2 | 0 | … | 
| - t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | 0 | - Δ 2 | … | 
| 0 | - t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | 0 | … | 
| 0 | 0 | - t 2 | - μ 2 | - t 2 | 0 | 0 | Δ 2 | … | 
| 0 | 0 | 0 | - t 2 | - μ 2 | 0 | 0 | 0 | … | 
| 0 | Δ 2 | 0 | 0 | 0 | μ 2 | t 2 | 0 | … | 
| - Δ 2 | 0 | Δ 2 | 0 | 0 | t 2 | μ 2 | t 2 | … | 
| 0 | - Δ 2 | 0 | Δ 2 | 0 | 0 | t 2 | μ 2 | … | 
| … | … | … | … | … | … | … | … | … | 
|  | |||||||
| 
 | |||||||
| 0 | - μ 4 | 0 | - t 4 Δ 4 | 0 | 0 | 0 | 0 | … | 
| μ 4 | 0 | t 4 Δ 4 | 0 | 0 | 0 | 0 | 0 | … | 
| 0 | - t 4 Δ 4 | 0 | - μ 4 | 0 | - t 4 Δ 4 | 0 | 0 | … | 
| t 4 Δ 4 | 0 | μ 4 | 0 | t 4 Δ 4 | 0 | 0 | 0 | … | 
| 0 | 0 | 0 | - t 4 Δ 4 | 0 | - μ 4 | 0 | - t 4 Δ 4 | … | 
| 0 | 0 | t 4 Δ 4 | 0 | μ 4 | 0 | t 4 Δ 4 | 0 | … | 
| 0 | 0 | 0 | 0 | 0 | - t 4 Δ 4 | 0 | - μ 4 | … | 
| 0 | 0 | 0 | 0 | t 4 Δ 4 | 0 | μ 4 | 0 | … | 
| … | … | … | … | … | … | … | … | … |