Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumPlaybook

Guides

  • QuantumPlaybook

Tech Notes

  • Addition of Numbers
  • Baker-Hausdorff Lemma
  • Chiral Fermion Random Circuit
  • Clifford Operators: How to Test
  • Commutation Relations for Qubits
  • Entanglement Distillation
  • Generalized Pauli Operators: Implementation
  • Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
  • Hatano-Nelson Model: Monte Carlo Simulation
  • Kitaev Chain
  • Kitaev Random Circuit
  • Λ-Matter in a Cavity
  • Measurement of Total Pauli Z
  • Non-Unitary Dynamics of Quantum States
  • Partial Trace: Physical Meaning
  • Quantum Dot Systems
  • A Quantum Playbook
  • Magnetic Exchange Coupling
  • Solovay-Kitaev Algorithm
  • Spin Code
  • Symmetry Effects On Quantum Master Equations
  • Transmon: Quantum Phase Model
  • Transposition as a Supermap
  • Variational Quantum Classifier: Iris
  • Variational Quantum Classifier: Parity
  • Variational Quantum Eigensolver: Transverse-Field Ising Model

Symbols

  • BlochEnergy
  • BlochFunction
  • QuantumPlaybookCheckUpdate
  • QuantumPlaybookEdition
  • QuantumPlaybookUpdate
  • TransmonEnergy
  • TransmonExponent
  • TransmonFunction
  • TransmonHamiltonian
QuantumMob/Transmon`
TransmonEnergy
​
TransmonEnergy
[n,α,q]
returns the dimensionless energy of the
n
-th excited state of the dimensionless transmon Hamiltonian for MacCumber parameter α and dimensionless gate charge
q
, with
n=0
referring to the ground state.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
In the charging limit, the quantum phase model is subjected to a large fluctuation of phase. It is analogous to a free particle in a ring.
In[1]:=
α=5.0;​​PlotEvaluate@Table
TransmonEnergy
[n,α,q],{n,0,3},{q,-2,2},​​FrameLabel{"
q
","ϵ"}
Out[1]=
In[2]:=
α=5.;​​Table
TransmonEnergy
[n,α,0],{n,0,3}​​Table
TransmonEnergy
[n,α,1/2],{n,0,3}
Out[2]=
{0.192022,2.69867,2.70664,10.2005}
Out[2]=
{0.72304,0.92296,5.82596,5.82604}
In the Josephson limit, the quantum phase model behaves like a harmonic oscillator.
In[3]:=
α=0.2;​​PlotEvaluate@Table
TransmonEnergy
[n,α,q],{n,0,3},{q,-2,2},​​FrameLabel{"
q
","ϵ"}
Out[3]=
In[4]:=
α=0.2;​​Table
TransmonEnergy
[n,α,0],{n,0,3}​​Table
TransmonEnergy
[n,α,1/2],{n,0,3}
Out[4]=
{0.493669,1.468,2.41574,3.33564}
Out[4]=
{0.493669,1.468,2.41574,3.33564}
As the MacCumber parameter α varies, the spectrum gradually changes from the Josephson to charging limit.
In[5]:=
Plot​​Evaluate@Table
TransmonEnergy
[n,alpha,0],{n,0,6},{alpha,0.01,2.01},​​FrameLabel{"α","ϵ"}​​
Out[5]=
The degeneracy in the Josephson limit is lifted for finite dimensionless gate charge q.
In[6]:=
Plot​​Evaluate@Table
TransmonEnergy
[n,alpha,0.1],{n,0,6},{alpha,0.01,2.01},​​FrameLabel{"α","ϵ"}​​
Out[6]=
SeeAlso
TransmonFunction
 
▪
BlochEnergy
 
▪
BlochFunction
 
▪
MathieuCharacteristicA
 
▪
MathieuCharacteristicB
TechNotes
▪
Transmon: Quantum Phase Model
▪
Mathieu and Related Functions
▪
Quantum Information Systems with Q3
▪
Quantum Many-Body Systems with Q3
▪
Quantum Spin Systems with Q3
RelatedGuides
▪
Quantum Information Systems
▪
Quantum Many-Body Systems
▪
Quantum Spin Systems
RelatedLinks
▪
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999)
, "Coherent control of macroscopic quantum states in a single-Cooper-pair box."
▪
J. Koch
, "Charge-insensitive qubit design derived from the Cooper pair box."
▪
G. Blanch (1972)
, "Mathieu Functions" in
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by M. Abramowitz and I. A. Stegun (John Wiley & Sons, 1972).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com