Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

QuantumPlaybook

Guides

  • QuantumPlaybook

Tech Notes

  • Addition of Numbers
  • Baker-Hausdorff Lemma
  • Chiral Fermion Random Circuit
  • Clifford Operators: How to Test
  • Commutation Relations for Qubits
  • Entanglement Distillation
  • Generalized Pauli Operators: Implementation
  • Hatano-Nelson-Kitaev Model: Monte Carlo Simulation
  • Hatano-Nelson Model: Monte Carlo Simulation
  • Kitaev Chain
  • Kitaev Random Circuit
  • Λ-Matter in a Cavity
  • Measurement of Total Pauli Z
  • Non-Unitary Dynamics of Quantum States
  • Partial Trace: Physical Meaning
  • Quantum Dot Systems
  • A Quantum Playbook
  • Magnetic Exchange Coupling
  • Solovay-Kitaev Algorithm
  • Spin Code
  • Symmetry Effects On Quantum Master Equations
  • Transmon: Quantum Phase Model
  • Transposition as a Supermap
  • Variational Quantum Classifier: Iris
  • Variational Quantum Classifier: Parity
  • Variational Quantum Eigensolver: Transverse-Field Ising Model

Symbols

  • BlochEnergy
  • BlochFunction
  • QuantumPlaybookCheckUpdate
  • QuantumPlaybookEdition
  • QuantumPlaybookUpdate
  • TransmonEnergy
  • TransmonExponent
  • TransmonFunction
  • TransmonHamiltonian
Commutation Relations for Qubits
Method Using
Pauli
[⋯]
Method Using
S[⋯]**S[⋯]**⋯
Let
J:=(
x
J
,
y
J
,
z
J
)
be the angular momentum operator. Then,
U=exp(-ϕJ·n)
is the rotation operator around the axis n by angle ϕ. This implies that the angular momentum operators satisfy the following transformation rules.
U
ν
J
†
U
=
∑
μ
μ
J
R
μν
(n,ϕ)
,
where
R(n,ϕ)
is the three-dimensional rotation matrix around axis n by angle ϕ.
As a simple example of applications of Q3, here we illustrate the fundamental commutation relations among the Pauli operators.
MultiplyExp
Represents the exponential function of operators (noncommutative variables)
Rotation
Represents the rotation operator
EulerRotation
Represents the Euler rotation operator
Q3 functions related to the fundamental commutation relations of the Pauli operators on qubits.
Make sure that the
Q3
package is loaded to use the demonstrations in this documentation.
In[1]:=
Needs["QuantumMob`Q3`"]
Throughout this document, symbol S will be used to denote qubits and Pauli operators on them. Similarly, symbol c will be used to denote complex-valued coefficients.
In[2]:=
Let[Qubit,S]​​Let[Complex,c]
Method Using
Pauli
[⋯]
Consider a rotation around the z-axis.
In[204]:=
Let[Real,ϕ]​​U=Rotation[ϕ,3]
Out[205]=
Cos
ϕ
2

0
σ
-
z
σ
Sin
ϕ
2

We are going to transform the Pauli operators under conjugation by U.
In[200]:=
in={Pauli[1],Pauli[2],Pauli[3]}
Out[200]=
{
x
σ
,
y
σ
,
z
σ
}
According to the fundamental commutation relations, the following two expressions are equivalent.
In[206]:=
out=U**in**Dagger[U]
Out[206]=
{Cos[ϕ]
x
σ
+
y
σ
Sin[ϕ],Cos[ϕ]
y
σ
-
x
σ
Sin[ϕ],
z
σ
}
In[207]:=
new=in.RotationMatrix[ϕ,{0,0,1}]
Out[207]=
{Cos[ϕ]
x
σ
+
y
σ
Sin[ϕ],Cos[ϕ]
y
σ
-
x
σ
Sin[ϕ],
z
σ
}
In[208]:=
out-new
Out[208]=
{0,0,0}
Method Using
S[⋯]**S[⋯]**⋯
Consider a rotation around the y-axis.
In[213]:=
U=Rotation[ϕ,S[2]]​​Elaborate[U]
Out[213]=
Rotation[ϕ,
y
S
]
Out[214]=
Cos
ϕ
2
-
y
S
Sin
ϕ
2

We are going to transform the Pauli operators under conjugation by U.
In[215]:=
in=S[All]
Out[215]=
{
x
S
,
y
S
,
z
S
}
According to the fundamental commutation relations, the following two expressions are equivalent.
In[216]:=
out=Rotation[ϕ,S[2]]**SS**Rotation[-ϕ,S[2]]
Out[216]=
{Cos[ϕ]
x
S
-
z
S
Sin[ϕ],
y
S
,Cos[ϕ]
z
S
+
x
S
Sin[ϕ]}
In[217]:=
new=SS.RotationMatrix[ϕ,{0,1,0}]
Out[217]=
{Cos[ϕ]
x
S
-
z
S
Sin[ϕ],
y
S
,Cos[ϕ]
z
S
+
x
S
Sin[ϕ]}
In[218]:=
out-new
Out[218]=
{0,0,0}
RelatedGuides
▪
Quantum Information Systems
RelatedTechNotes
▪
The Postulates of Quantum Mechanics
▪
Quantum Computation: Overview
▪
Quantum Algorithms
▪
Quantum Noise and Decoherence
▪
Quantum Error-Correction Codes
▪
Quantum Information Theory
▪
Quantum Information Systems with Q3
RelatedLinks
▪
Mahn-Soo Choi (2022)
, A Quantum Computation Workbook (Springer).
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com