Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

TCGADataTool

Guides

  • TCGA Data Tool

Tech Notes

  • Custom Entities
  • Data Exploration
  • Data Modeling
  • Data Visualization
  • Genomic Data
  • Images Download
  • Property Standard Name
  • User Interface

Symbols

  • buildDesignMatrix
  • buildModel
  • cleanRawData
  • columnHeaderRiskClassSummary
  • downloadGenomicData
  • dynamicallyExploreThreshold
  • exampleDataTCGA
  • getHistologicalImages
  • getPotentialPredictors
  • importGenomicDataFile
  • inspectPotentialPredictors
  • modelMeasurementsAtThreshold
  • overallSurvivalPlot
  • progressionFreeSurvivalPlot
  • pullDataSlice
  • radiologicalImagesBatchProcessing
  • swimmerPlot
  • TCGADataToolUserInterface
JaneShenGunther`TCGADataTool`
modelMeasurementsAtThreshold
​
modelMeasurementsAtThreshold
[probabilities,actualOutcome,threshold]
takes the
probabilities
of a binomial event predicted by a model, the actual outcomes and the desired
threshold
and returns metrics about the models performance.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Get example classifier model for TCGA-CESC project:
In[1]:=
exampleModel=
exampleDataTCGA
[{"TCGADataModel","TCGACESCClinicalVitalStatusClassifier"}]
Out[1]=
ClassifierFunction

Input type:
Mixed
(number: 116)
Classes: Alive,Dead

Get the design matrix used to train the model:
In[2]:=
exampleDesignMatrix=
exampleDataTCGA
[{"TCGADataModel","TCGACESCClinicalVitalStatusClassifier"},"DesignMatrix"];
In[3]:=
outcomeProperty=
exampleDataTCGA
[{"TCGADataModel","TCGACESCClinicalVitalStatusClassifier"},"OutcomeProperty"]
Out[3]=
Clinical::Patient::vital_status
Get model performances for threshold 0.8:
In[4]:=
classes=Information[exampleModel,"Classes"]
Out[4]=
{Alive,Dead}
In[5]:=
allProbabilities=exampleModel[exampleDesignMatrix,"Probabilities"];​​allProbabilities〚;;2〛
Out[5]=
{Alive0.815417,Dead0.184583,Alive0.635113,Dead0.364887}
In[6]:=
actualOutcomes=exampleDesignMatrix〚All,outcomeProperty〛;​​actualOutcomes〚;;2〛
Out[6]=
{Alive,Dead}
In[7]:=
threshold=.8;
In[8]:=
measurements=
modelMeasurementsAtThreshold
[classes,allProbabilities,actualOutcomes,threshold];
In[9]:=
measurements//Dataset
Out[9]=
Scope  
(1)

SeeAlso
dynamicallyExploreThreshold
TechNotes
▪
Property Standard Name
▪
Data Modeling
RelatedGuides
▪
TCGA Data Tool
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com