Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
uniformobservabilityindices
​
{systemobservable,nO,observabilityindices,transformation,systemextended}=uniformobservabilityindices[system]
returns an extended system
systemextended
that has uniform observability indices and in strict observer canonical form. The original system is observable if and only if the extended system is observable if and only if
systemobservable
= True. The observable subspace in the extended system is
nO
dimensional,
observabilityindices
are a list of observability indices for the extended system,
transformation
is the state transformation that will lead the extended system to the
systemextended
, which is in strict observer canonical form. (Only active outputs of the system are considered outputs.)
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system={{x1,x2,x3},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,2,0,0,0,0,1},{-2,-1,1,1,1,1,0},{-1,-2,-3,-1,1,1,1},{1,0,0,0,0,1,0},{0,1,0,0,0,0,1},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}};
In[2]:=
{systemobservable,nO,observabilityindices,transformation,systemextended}=
uniformobservabilityindices
[system]
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
State transformation is xold = transformation.xnew
Out[2]=
{True,4,{2,2},{{1,0,0,0},{0,0,1,0},{0,0,-3,1},{0,1,0,0}},{{x11,x21,x31,x41},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,1,2,0,0,0,0,1},{0,0,0,0,0,0,0,0},{-2,0,-4,1,1,1,1,0},{-7,0,-5,0,2,4,4,1},{1,0,0,0,0,0,1,0},{0,0,1,0,0,0,0,1},{1,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}}}
In[3]:=
systemoperation
[systemextended,{"State transformation",Inverse[transformation]}]
State transformation is xold = transformation.xnew
Out[3]=
{{x1,x2,x3,x4},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,2,0,1,0,0,0,1},{-2,-1,1,0,1,1,1,0},{-1,-2,-3,0,-1,1,1,1},{0,0,0,0,0,0,0,0},{1,0,0,0,0,0,1,0},{0,1,0,0,0,0,0,1},{1,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}}
SeeAlso
observabilityQandindices
 
▪
observercanonicalform
 
▪
strictobservercanonicalform
 
▪
strictOCFAD
RelatedGuides
▪
Guide for ZigangPan`LinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com