Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
controllercanonicalform
​
{systemcontrollable,nC,controllabilityindices,transformation,systemb}=controllercanonicalform[system]
​ tests the controllability of the pair (a,b) that correspond to the LTI
system
with the active inputs as the inputs. It returns True if the pair is controllable in
systemcontrollable
.
nC
equals the dimension of the controllable subspace, and
controllabilityindices
is the list of controllability indices of the inputs,
transformation
is an invertible matrix such that (Inverse[transformation].a.transformation,Inverse[transformation].b) is in controller canonical form, and the transformed
system
(in controller canonical form) is returned as
systemb
.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system={{x1,x2,x3},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,2,0,0,0,0,1},{-2,-1,1,1,1,1,0},{-1,-2,-3,-1,1,1,1},{1,0,0,0,0,1,0},{0,1,0,0,0,0,1},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}};
In[2]:=
{systemcontrollable,nC,controllabilityindices,transformation,systemb}=
controllercanonicalform
[system]
State transformation is xold = transformation.xnew
Out[2]=
True,3,{2,1},
1
2
,0,0,-
1
2
,1,0,
1
4
,
1
2
,
1
2
,{x11,x21,x31},{u1,u2,w1,w2},{y1,y2,z1,z2},{0,1,0,0,0,0,2},-
7
4
,
3
2
,
1
2
,1,1,1,1,
11
4
,-
21
2
,-
7
2
,0,1,1,0,
1
2
,0,0,0,0,1,0,-
1
2
,1,0,0,0,0,1,
1
2
,0,0,0,0,0,0,-
1
2
,1,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}
SeeAlso
controllabilityQandindices
 
▪
stablizabilityQ
 
▪
observercanonicalform
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com