Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
systemcheck
​
systemcheck
[system]
returns
True
if system is a valid LTI system in proper representation: system={statenames,inputnames,outputnames,SystemMatrix,activeinputs,activeoutputs, controlinputs,disturbanceinputs,measurementoutputs,controlledoutpts}. Otherwise, it returns
False
. statenames: such as {x1,x2,x3}, is n dimensional; inputnames: such as {u1,u2,w1,w2}, is p dimensional; outputnames: such as {y1,y2,z1,z2}, is m dimensional; SystemMatrix: is the (n+m)×(n+p) dimensional system matrix; activeinputs: such as {1,2}, indicates that inputnames[[activeinputs]] are the active inputs; activeoutputs: such as {1,2}, indicates that outputnames[[activeoutputs]] are the active outputs; controlinputs: such as {1,2}, indicates that inputnames[[controlinputs]] are the control inputs; disturbanceinputs: such as {3,4}, indicates that inputnames[[disturbanceinputs]] are the disturbance inputs; measurementoutputs: such as {1,2}, indicates that outputnames[[measurementoutputs]] are the measured outputs; controlledoutputs: such as {3,4}, indicates that outputnames[[controlledoutputs]] are the controlled outputs (or performance variables).
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system={{x1,x2,x3},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,2,0,0,0,0,1},{-2,-1,1,1,1,1,0},{-1,-2,-3,-1,1,1,1},{1,0,0,0,0,1,0},{0,1,0,0,0,0,1},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}};
In[2]:=
systemcheck
[system]
Out[2]=
True
In[3]:=
system1={{x1,x2,x3},{u1,w1,u2,w2},{y1,y2,z1,z2},{{-1,θ1,0,0,0,0,1},{-2,-1,1,1,1,1,0},{-1,-θ2,-3,-1,1,1,1},{1,0,0,0,0,1,0},{0,1,0,0,0,0,1},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,3},{1,2},{1,3},{2,4},{1,2},{3,4}};
In[4]:=
systemcheck
[system1]
Out[4]=
True
SeeAlso
systemoperation
 
▪
systemblockdiagonal
 
▪
systemparallel
 
▪
systemconcatenate
 
▪
systemfeedback
RelatedGuides
▪
Guide for ZigangPan`LinearSystems`
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com