Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
rd0DMcompute
​
rd0DMcompute[system,θ]
returns the design model for a parametrized MIMO LTI system with uniform relative degree of zero and is also in strict observer canonical form. (
θ
must appear in the system linearly for the function to work.)
system
: a LTI system.
θ
: parameters in the system.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
θbar={θb11,θb12,θb13};
In[2]:=
system={{x11,x12,x13,x14,x15},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},​​{{0,1,0,θb11,0,2θb11,θb12,0,0,0,0,0,θb11},​​{0,0,1,0,0,0,0,0,0,0,0,0,0},​​{0,-θb13,0,0,0,0,0,0,0,0,0,0,0},​​{-1,0,0,-2,1,-θb11,-θb12,0,0,0,0,0,θb12},​​{0,0,0,-1/2,-1,0,0,0,0,0,0,0,θb12},​​{1,0,0,0,0,θb11,θb12,1,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,1,0,0,0,0},​​{1,0,0,0,0,θb11,θb12,0,0,0,0,0,0},​​{0,0,0,1,0,-θb12,θb11,0,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4,5,6,7,8},{1,2},{3,4}};
systemcheck
[system]
Out[2]=
True
In[3]:=
EZDCFAD
[system,θbar]
Out[3]=
0,{{θb11,θb12},{-θb12,θb11}},default,default,{{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0},{0,0,0,0,1}},{x11,x12,x13,x14,x15},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6,y11,y12},{y11,y12,z11,z12},-
2
2
θb11
2
θb11
+
2
θb12
-
2
θb12
2
θb11
+
2
θb12
,1,0,θb11+
θb11θb12
2
θb11
+
2
θb12
,0,0,0,-
2
2
θb11
2
θb11
+
2
θb12
-
2
θb12
2
θb11
+
2
θb12
,
θb11θb12
2
θb11
+
2
θb12
,0,0,0,θb11,
2
2
θb11
2
θb11
+
2
θb12
+
2
θb12
2
θb11
+
2
θb12
,-
θb11θb12
2
θb11
+
2
θb12
,{0,0,1,0,0,0,0,0,0,0,0,0,0,0,0},{0,-θb13,0,0,0,0,0,0,0,0,0,0,0,0,0},-1+
2
θb11
2
θb11
+
2
θb12
+
2
θb12
2
θb11
+
2
θb12
,0,0,-2,1,0,0,
2
θb11
2
θb11
+
2
θb12
+
2
θb12
2
θb11
+
2
θb12
,0,0,0,0,θb12,-
2
θb11
2
θb11
+
2
θb12
-
2
θb12
2
θb11
+
2
θb12
,0,0,0,0,-
1
2
,-1,0,0,0,0,0,0,0,θb12,0,0,{1,0,0,0,0,θb11,θb12,1,0,0,0,0,0,0,0},{0,0,0,1,0,-θb12,θb11,0,1,0,0,0,0,0,0},{1,0,0,0,0,θb11,θb12,0,0,0,0,0,0,0,0},{0,0,0,1,0,-θb12,θb11,0,0,0,0,0,0,0,0},{1,2,9,10},{1,2},{1,2},{3,4,5,6,7,8},{1,2},{3,4}
In[4]:=
{strictform1,systemobservable1,nO1,observabilityindices1,transformation1,systeminobservercanonicalform1}=
strictobservercanonicalform
[system]
State transformation is xold = transformation.xnew
Out[4]=
True,True,5,{3,2},{{1,0,0,0,0},{0,1,0,-θb11,0},{-θb13,0,1,0,-θb11},{0,0,0,1,0},{0,0,0,-1,1}},{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},{0,1,0,0,0,2θb11,θb12,0,0,0,0,0,θb11},{-θb11-θb13,0,1,-3θb11,0,-
2
θb11
,-θb11θb12,0,0,0,0,0,θb11θb12},-θb11,0,0,-
5θb11
2
+θb11θb13,0,-
2
θb11
+2θb11θb13,-θb11θb12+θb12θb13,0,0,0,0,0,2θb11θb12+θb11θb13,{-1,0,0,-3,1,-θb11,-θb12,0,0,0,0,0,θb12},-1,0,0,-
5
2
,0,-θb11,-θb12,0,0,0,0,0,2θb12,{1,0,0,0,0,θb11,θb12,1,0,0,0,0,0},{0,0,0,1,0,-θb12,θb11,0,1,0,0,0,0},{1,0,0,0,0,θb11,θb12,0,0,0,0,0,0},{0,0,0,1,0,-θb12,θb11,0,0,0,0,0,0},{1,2},{1,2},{1,2},{3,4,5,6,7,8},{1,2},{3,4}
In[5]:=
predesignmodel1=ExpandAll[systeminobservercanonicalform1/.{θb11θ11+1/2,θb12θ12+1/2,θb133θ13+1/2}]
Out[5]=
{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},0,1,0,0,0,1+2θ11,
1
2
+θ12,0,0,0,0,0,
1
2
+θ11,-1-θ11-3θ13,0,1,-
3
2
-3θ11,0,-
1
4
-θ11-
2
θ11
,-
1
4
-
θ11
2
-
θ12
2
-θ11θ12,0,0,0,0,0,
1
4
+
θ11
2
+
θ12
2
+θ11θ12,-
1
2
-θ11,0,0,-1-2θ11+
3θ13
2
+3θ11θ13,0,
1
4
-
2
θ11
+3θ13+6θ11θ13,-
θ11
2
-θ11θ12+
3θ13
2
+3θ12θ13,0,0,0,0,0,
3
4
+
3θ11
2
+θ12+2θ11θ12+
3θ13
2
+3θ11θ13,-1,0,0,-3,1,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,
1
2
+θ12,-1,0,0,-
5
2
,0,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,1+2θ12,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,1,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,1,0,0,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4,5,6,7,8},{1,2},{3,4}
In[6]:=
predesignmodel1=ExpandAll[predesignmodel1/.{θ11^2θ14,θ11θ12θ15,θ11θ13θ16,θ12θ13θ17}]
Out[6]=
{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6},{y11,y12,z11,z12},0,1,0,0,0,1+2θ11,
1
2
+θ12,0,0,0,0,0,
1
2
+θ11,-1-θ11-3θ13,0,1,-
3
2
-3θ11,0,-
1
4
-θ11-θ14,-
1
4
-
θ11
2
-
θ12
2
-θ15,0,0,0,0,0,
1
4
+
θ11
2
+
θ12
2
+θ15,-
1
2
-θ11,0,0,-1-2θ11+
3θ13
2
+3θ16,0,
1
4
+3θ13-θ14+6θ16,-
θ11
2
+
3θ13
2
-θ15+3θ17,0,0,0,0,0,
3
4
+
3θ11
2
+θ12+
3θ13
2
+2θ15+3θ16,-1,0,0,-3,1,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,
1
2
+θ12,-1,0,0,-
5
2
,0,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,1+2θ12,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,1,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,1,0,0,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4,5,6,7,8},{1,2},{3,4}
In[7]:=
θ1={θ11,θ12,θ13,θ14,θ15,θ16,θ17}
Out[7]=
{θ11,θ12,θ13,θ14,θ15,θ16,θ17}
In[8]:=
designmodel1=
rd0DMcompute
[predesignmodel1,θ1]
State transformation is xold = transformation.xnew
Out[8]=
{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6,y11,y12},{y11,y12,z11,z12},0,1,0,0,0,1+2θ11,
1
2
+θ12,0,0,0,0,0,
1
2
+θ11,0,0,-1,0,1,-
3
2
,0,-
1
4
-θ11+3θ11-
1
2
-θ12-
1
2
+θ11(-θ11-3θ13)-θ14,-
1
4
-
θ11
2
+3θ11
1
2
+θ11-
θ12
2
-
1
2
+θ12(-θ11-3θ13)-θ15,θ11+3θ13,3θ11,0,0,0,
1
4
+
θ11
2
+
θ12
2
+θ15,-θ11-3θ13,-3θ11,-
1
2
,0,0,-1,0,
1
4
+θ11
1
2
+θ11+3θ13-θ14+6θ16--
1
2
-θ12-2θ11+
3θ13
2
+3θ16,-
θ11
2
+θ11
1
2
+θ12+
3θ13
2
-θ15-
1
2
+θ11-2θ11+
3θ13
2
+3θ16+3θ17,θ11,2θ11-
3θ13
2
-3θ16,0,0,0,
3
4
+
3θ11
2
+θ12+
3θ13
2
+2θ15+3θ16,-θ11,-2θ11+
3θ13
2
+3θ16,-1,0,0,-3,1,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,
1
2
+θ12,0,0,-1,0,0,-
5
2
,0,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,1+2θ12,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,1,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,1,0,0,0,0,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,0,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,0,0,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10},{1,2},{3,4}
In[9]:=
designmodel1=ExpandAll[designmodel1]
Out[9]=
{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6,y11,y12},{y11,y12,z11,z12},0,1,0,0,0,1+2θ11,
1
2
+θ12,0,0,0,0,0,
1
2
+θ11,0,0,-1,0,1,-
3
2
,0,-
1
4
-2θ11+
2
θ11
-3θ11θ12+
3θ13
2
+3θ11θ13-θ14,-
1
4
+
3θ11
2
+3
2
θ11
-
θ12
2
+θ11θ12+
3θ13
2
+3θ12θ13-θ15,θ11+3θ13,3θ11,0,0,0,
1
4
+
θ11
2
+
θ12
2
+θ15,-θ11-3θ13,-3θ11,-
1
2
,0,0,-1,0,
1
4
-
θ11
2
+
2
θ11
-2θ11θ12+
15θ13
4
+
3θ12θ13
2
-θ14+
15θ16
2
+3θ12θ16,θ11+2
2
θ11
+θ11θ12+
3θ13
4
-
3θ11θ13
2
-θ15-
3θ16
2
-3θ11θ16+3θ17,θ11,2θ11-
3θ13
2
-3θ16,0,0,0,
3
4
+
3θ11
2
+θ12+
3θ13
2
+2θ15+3θ16,-θ11,-2θ11+
3θ13
2
+3θ16,-1,0,0,-3,1,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,
1
2
+θ12,0,0,-1,0,0,-
5
2
,0,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,1+2θ12,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,1,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,1,0,0,0,0,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,0,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,0,0,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10},{1,2},{3,4}
In[10]:=
designmodel1=ExpandAll[designmodel1/.{θ11^2θ14,θ11θ12θ15,θ11θ13θ16,θ12θ13θ17}]
Out[10]=
{x1,x2,x3,x4,x5},{u11,u12,wg1,wg2,wg3,wg4,wg5,wg6,y11,y12},{y11,y12,z11,z12},0,1,0,0,0,1+2θ11,
1
2
+θ12,0,0,0,0,0,
1
2
+θ11,0,0,-1,0,1,-
3
2
,0,-
1
4
-2θ11+
3θ13
2
-3θ15+3θ16,-
1
4
+
3θ11
2
-
θ12
2
+
3θ13
2
+3θ14+3θ17,θ11+3θ13,3θ11,0,0,0,
1
4
+
θ11
2
+
θ12
2
+θ15,-θ11-3θ13,-3θ11,-
1
2
,0,0,-1,0,
1
4
-
θ11
2
+
15θ13
4
-2θ15+
15θ16
2
+3θ12θ16+
3θ17
2
,θ11+
3θ13
4
+2θ14-3θ16-3θ11θ16+3θ17,θ11,2θ11-
3θ13
2
-3θ16,0,0,0,
3
4
+
3θ11
2
+θ12+
3θ13
2
+2θ15+3θ16,-θ11,-2θ11+
3θ13
2
+3θ16,-1,0,0,-3,1,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,
1
2
+θ12,0,0,-1,0,0,-
5
2
,0,-
1
2
-θ11,-
1
2
-θ12,0,0,0,0,0,1+2θ12,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,1,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,1,0,0,0,0,0,0,1,0,0,0,0,
1
2
+θ11,
1
2
+θ12,0,0,0,0,0,0,0,0,0,0,0,1,0,-
1
2
-θ12,
1
2
+θ11,0,0,0,0,0,0,0,0,{1,2},{1,2},{1,2},{3,4,5,6,7,8,9,10},{1,2},{3,4}
In[11]:=
designmodel1=ExpandAll[designmodel1/.{θ11θ16θ18,θ12θ16θ19}]

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com