Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
observabilityQandindices
​
{systemobservable,nO,observabilityindices,transformation}=observabilityQandindices[a,c]
​ tests the observability of the pair (a,c) and returns
True
if the pair is observable in systemobservable. nO equals the dimension of the observable subspace, and observabilityindices is the list of observability indices of the outputs, and transformation is an invertible matrix such that (Inverse[transformation].a.transformation,c.transformation) is in observer canonical form. The trivial case where some or all dimensions of the matrices
a
,
c
are 0 are allowed.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
a={{1}};c={};
observabilityQandindices
[a,c]
Out[1]=
{False,0,{},{{1}}}
In[2]:=
a={};c={};
observabilityQandindices
[a,c]
Out[2]=
{True,0,{},{}}
In[3]:=
a={{1,1,2,0,0,0},{1,1,1,1,0,0},{-1,1,0,0,1,0},{0,0,0,0,0,1},{-1,-1,2,0,0,1},{-2,2,0,0,1,0}};c={{1,0,0,0,0,0},{0,0,0,1,0,0}};
observabilityQandindices
[a,c]
Out[3]=
True,6,{3,3},{1,0,0,0,0,0},
1
3
,-
1
3
,-
2
3
,
1
3
,
2
3
,
4
3
,1,
2
3
,
1
3
,-2,-
1
3
,-
2
3
,{0,0,0,1,0,0},
5
3
,
4
3
,
4
3
,-
1
3
,-
8
3
,-
5
3
,
2
3
,0,0,-
4
3
,1,0
In[4]:=
a=Table[RandomInteger[{-1,1}],{i,6},{j,6}];c=Table[RandomInteger[{0,1}],{i,2},{j,6}];
observabilityQandindices
[a,c]
Out[4]=
True,6,{6,0},
15
22
,-
13
33
,
5
66
,-
3
22
,-
4
33
,-
23
66
,-
7
44
,
29
132
,-
17
132
,-
3
44
,-
19
132
,-
15
44
,
91
264
,-
1
264
,
5
88
,-
5
264
,-
13
264
,-
25
264
,-
17
264
,
35
264
,
1
88
,
43
264
,
59
264
,
127
264
,
103
264
,-
5
264
,
31
264
,
19
264
,
67
264
,
139
264
,-
17
66
,
13
66
,-
4
33
,
5
33
,
2
33
,
17
66

In[5]:=
tr=Out[48]〚4〛
Out[5]=

15
22
,-
13
33
,
5
66
,-
3
22
,-
4
33
,-
23
66
,-
7
44
,
29
132
,-
17
132
,-
3
44
,-
19
132
,-
15
44
,
91
264
,-
1
264
,
5
88
,-
5
264
,-
13
264
,-
25
264
,-
17
264
,
35
264
,
1
88
,
43
264
,
59
264
,
127
264
,
103
264
,-
5
264
,
31
264
,
19
264
,
67
264
,
139
264
,-
17
66
,
13
66
,-
4
33
,
5
33
,
2
33
,
17
66

In[6]:=
Inverse[tr].a.tr
Out[6]=
{{-1,1,0,0,0,0},{0,0,1,0,0,0},{-1,0,0,1,0,0},{11,0,0,0,1,0},{10,0,0,0,0,1},{-6,0,0,0,0,0}}
In[7]:=
c.tr
Out[7]=
{{1,0,0,0,0,0},{1,0,0,0,0,0}}
SeeAlso
observercanonicalform
 
▪
detectabilityQ
 
▪
strictobservercanonicalform
 
▪
uniformobservabilityindices
 
▪
strictOCFAD
 
▪
controllabilityQandindices
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com