Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

LinearSystems

Guides

  • Guide for ZigangPan`LinearSystems`

Symbols

  • calculaterelativedegree
  • controllabilityQandindices
  • controllercanonicalform
  • detectabilityQ
  • DTLyapunovequation
  • DTRiccatiequation
  • dynamicextension
  • emptyLTIsystem
  • EZDCFAD
  • EZDCF
  • gainsystem
  • generalizedRiccatiequationHM
  • linearLyapunovequation
  • observabilityQandindices
  • observercanonicalform
  • rd0DMcompute
  • Riccatiequation
  • simulationLTIsystem
  • stablizabilityQ
  • strictobservercanonicalform
  • strictOCFAD
  • systemblockdiagonal
  • systemcheck
  • systemconcatenate
  • systemfeedback
  • systemoperation
  • systemparallel
  • uniformobservabilityindices
  • ZDCF
ZigangPan`LinearSystems`
calculaterelativedegree
​
{vectorrelativedegree,relativedegrees,highfrequencygain}=calculaterelativedegree[a,b,c,d]
tests whether the LTI system D[x,t] =
a
.x +
b
.u; y =
c
.x +
d
.u admits vector relative degree. If so,
vectorrelativedegree
= True. The individual relative degrees of each output is listed in
relativedegrees
. The high frequency gain matrix is
highfrequencygain
. It is required that the LTI system has at least one input and at least one output.
​
Examples  
(1)
Basic Examples  
(1)
In[1]:=
system={{x1,x2,x3},{u1,u2,w1,w2},{y1,y2,z1,z2},{{-1,2,0,0,0,0,1},{-2,-1,1,1,1,1,0},{-1,-2,-3,-1,1,1,1},{1,0,0,0,0,1,0},{0,1,0,0,0,0,1},{1,0,0,0,0,0,0},{0,1,0,0,0,0,0}},{1,2},{1,2},{1,2},{3,4},{1,2},{3,4}};
In[2]:=
n=Length[system〚1〛];p=Length[system〚5〛];m=Length[system〚6〛];
In[3]:=
{vectorrelativedegree,relativedegrees,highfrequencygain}=
calculaterelativedegree
[system〚4〛〚1;;n,1;;n〛,system〚4〛〚1;;n,n+1;;n+p〛,system〚4〛〚n+1;;n+m,1;;n〛,system〚4〛〚n+1;;n+m,n+1;;n+p〛]
Out[3]=
{False,{2,1},{{2,2},{1,1}}}
In[4]:=
system=
gainsystem
[{{1,2},{2,-1}}]
Out[4]=
{{},{tempinput1,tempinput2},{tempoutput1,tempoutput2},{{1,2},{2,-1}},{1,2},{1,2},{1,2},{},{1,2},{}}
In[5]:=
n=Length[system〚1〛];p=Length[system〚5〛];m=Length[system〚6〛];
In[6]:=
{vectorrelativedegree,relativedegrees,highfrequencygain}=
calculaterelativedegree
[system〚4〛〚1;;n,1;;n〛,system〚4〛〚1;;n,n+1;;n+p〛,system〚4〛〚n+1;;n+m,1;;n〛,system〚4〛〚n+1;;n+m,n+1;;n+p〛]
Out[6]=
{True,{0,0},{{1,2},{2,-1}}}
SeeAlso
dynamicextension
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com