Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
UpperLeftTriangularize
​
UpperLeftTriangularize
[matrix]
makes a triangular
matrix
with a triangle starting from the upper left.
​
​
UpperLeftTriangularize
[matrix,antidiagonal]
makes a triangular
matrix
with a triangle starting from the upper left and with the
antidiagonal
specified by
antidiagonal
.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Upper left triangularize a matrix:
In[1]:=
MatrixForm@
UpperLeftTriangularize

PyramidMatrix
[18]
Out[1]//MatrixForm=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
0
0
0
1
2
3
4
5
5
5
5
5
5
5
5
5
5
0
0
0
0
1
2
3
4
5
6
6
6
6
6
6
6
6
0
0
0
0
0
1
2
3
4
5
6
7
7
7
7
7
7
0
0
0
0
0
0
1
2
3
4
5
6
7
8
8
8
8
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
9
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Here's a smaller example:
In[2]:=
MatrixForm@
UpperLeftTriangularize

PyramidMatrix
[5]
Out[2]//MatrixForm=
1
1
1
1
1
1
2
2
2
0
1
2
3
0
0
1
2
0
0
0
1
0
0
0
0
Use a different antidiagonal (this is a super antidiagonal):
In[3]:=
MatrixForm@
UpperLeftTriangularize

PyramidMatrix
[5],1
Out[3]//MatrixForm=
1
1
1
1
1
1
2
2
2
1
1
2
3
2
0
1
2
2
0
0
1
1
0
0
0
Use a sub antidiagonal:
In[4]:=
MatrixForm@
UpperLeftTriangularize

PyramidMatrix
[5],-1
Out[4]//MatrixForm=
1
1
1
1
0
1
2
2
0
0
1
2
0
0
0
1
0
0
0
0
0
0
0
0
0
Here is an array plot:
In[5]:=
ArrayPlot
UpperLeftTriangularize

PyramidMatrix
[100]
Out[5]=
Here's a matrix plot:
In[6]:=
MatrixPlot
UpperLeftTriangularize

PyramidMatrix
[100]
Out[6]=
SeeAlso
LowerRightTriangularize
 
▪
LowerTriangularize
 
▪
UpperTriangularize
 
▪
LowerTriangularMatrixQ
 
▪
UpperTriangularMatrixQ
 
▪
BlockLowerTriangularMatrix
 
▪
BlockUpperTriangularMatrix
RelatedGuides
▪
Matrices
RelatedLinks
▪
Beecrowd Programming Challenge 1185 Above the
Secundary
Diagonal
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com