Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
ReflectedDiagonalMatrix
​
ReflectedDiagonalMatrix
[n]
creates a reflected diagonal matrix of order
n
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
Here are some examples:
In[1]:=
MatrixForm
ReflectedDiagonalMatrix
[1]
Out[1]//MatrixForm=
(
1
)
In[2]:=
MatrixForm
ReflectedDiagonalMatrix
[2]
Out[2]//MatrixForm=

1
2
2
1

In[3]:=
MatrixForm
ReflectedDiagonalMatrix
[3]
Out[3]//MatrixForm=
1
2
3
2
1
2
3
2
1
In[4]:=
MatrixForm
ReflectedDiagonalMatrix
[4]
Out[4]//MatrixForm=
1
2
3
4
2
1
2
3
3
2
1
2
4
3
2
1
In[5]:=
MatrixForm
ReflectedDiagonalMatrix
[5]
Out[5]//MatrixForm=
1
2
3
4
5
2
1
2
3
4
3
2
1
2
3
4
3
2
1
2
5
4
3
2
1
In[6]:=
MatrixForm
ReflectedDiagonalMatrix
[6]
Out[6]//MatrixForm=
1
2
3
4
5
6
2
1
2
3
4
5
3
2
1
2
3
4
4
3
2
1
2
3
5
4
3
2
1
2
6
5
4
3
2
1
In[7]:=
MatrixForm
ReflectedDiagonalMatrix
[7]
Out[7]//MatrixForm=
1
2
3
4
5
6
7
2
1
2
3
4
5
6
3
2
1
2
3
4
5
4
3
2
1
2
3
4
5
4
3
2
1
2
3
6
5
4
3
2
1
2
7
6
5
4
3
2
1
In[8]:=
MatrixForm
ReflectedDiagonalMatrix
[8]
Out[8]//MatrixForm=
1
2
3
4
5
6
7
8
2
1
2
3
4
5
6
7
3
2
1
2
3
4
5
6
4
3
2
1
2
3
4
5
5
4
3
2
1
2
3
4
6
5
4
3
2
1
2
3
7
6
5
4
3
2
1
2
8
7
6
5
4
3
2
1
In[9]:=
MatrixForm
ReflectedDiagonalMatrix
[9]
Out[9]//MatrixForm=
1
2
3
4
5
6
7
8
9
2
1
2
3
4
5
6
7
8
3
2
1
2
3
4
5
6
7
4
3
2
1
2
3
4
5
6
5
4
3
2
1
2
3
4
5
6
5
4
3
2
1
2
3
4
7
6
5
4
3
2
1
2
3
8
7
6
5
4
3
2
1
2
9
8
7
6
5
4
3
2
1
Neat Examples  
(1)

SeeAlso
PyramidMatrix
 
▪
AntidiagonalMatrix
RelatedGuides
▪
Matrices
RelatedLinks
▪
Beecrowd Programming Challenge 1478 Square Matrix II
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com