Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
AntidiagonalMatrix
​
AntidiagonalMatrix
[list]
gives a matrix with the elements of
list
on the leading antidiagonal,and 0 elsewhere.
​
​
AntidiagonalMatrix
[list,k]
gives a matrix with the elements of
list
on the kth antidiagonal.
​
​
AntidiagonalMatrix
[list,k,n]
pads with 0s to create an
n
by
n
matrix.
​
Details and Options

Examples  
(9)
Basic Examples  
(1)
Construct an antidiagonal matrix:
In[1]:=
AntidiagonalMatrix
[{a,b,c}]//MatrixForm
Out[1]//MatrixForm=
0
0
a
0
b
0
c
0
0
A super-antidiagonal matrix:
In[2]:=
AntidiagonalMatrix
[{a,b},1]//MatrixForm
Out[2]//MatrixForm=
0
a
0
b
0
0
0
0
0
A sub-antidiagonal matrix:
In[3]:=
AntidiagonalMatrix
[{a,b},-1]//MatrixForm
Out[3]//MatrixForm=
0
0
0
0
0
a
0
b
0
Scope  
(4)

Applications  
(3)

Properties & Relations  
(1)

SeeAlso
Antidiagonal
 
▪
Diagonal
 
▪
DiagonalMatrix
 
▪
Tr
 
▪
Band
RelatedGuides
▪
Matrices
RelatedLinks
▪
Main diagonal—Wikipedia
​
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com