Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
DeTriangularizableMatrixQ
​
DeTriangularizableMatrixQ
[matrix]
gives
True
if matrix is a lower triangular matrix or an upper triangular matrix and
False
otherwise. The function will return
True
if the matrix is detriangularizable, and
False
otherwise.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
A 7 by 7 matrix formed by partitioning the numbers from 1 to 49 into 7 groups:
In[1]:=
MatrixForm[matrix=Partition[Range[49],7]]
Out[1]//MatrixForm=
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
A lower triangular matrix on the main diagonal:
In[2]:=
MatrixForm[LowerTriangularize[matrix,0]]
Out[2]//MatrixForm=
1
0
0
0
0
0
0
8
9
0
0
0
0
0
15
16
17
0
0
0
0
22
23
24
25
0
0
0
29
30
31
32
33
0
0
36
37
38
39
40
41
0
43
44
45
46
47
48
49
This is detriangularizable:
In[3]:=
DeTriangularizableMatrixQ
[LowerTriangularize[matrix,0]]
Out[3]=
True
In[4]:=
MatrixForm
DeTriangularizeMatrix
[LowerTriangularize[matrix,0]]
Out[4]//MatrixForm=
1
8
15
22
29
36
43
8
9
16
23
30
37
44
15
16
17
24
31
38
45
22
23
24
25
32
39
46
29
30
31
32
33
40
47
36
37
38
39
40
41
48
43
44
45
46
47
48
49
This is not detriangularizable:
In[5]:=
MatrixForm[LowerTriangularize[matrix,1]]
Out[5]//MatrixForm=
1
2
0
0
0
0
0
8
9
10
0
0
0
0
15
16
17
18
0
0
0
22
23
24
25
26
0
0
29
30
31
32
33
34
0
36
37
38
39
40
41
42
43
44
45
46
47
48
49
In[6]:=
DeTriangularizableMatrixQ
[LowerTriangularize[matrix,1]]
Out[6]=
False
DeTriangularizeMatrix leaves the input unevaluated:
In[7]:=
DeTriangularizeMatrix
[LowerTriangularize[matrix,1]]
Out[7]=
DeTriangularizeMatrix[{{1,2,0,0,0,0,0},{8,9,10,0,0,0,0},{15,16,17,18,0,0,0},{22,23,24,25,26,0,0},{29,30,31,32,33,34,0},{36,37,38,39,40,41,42},{43,44,45,46,47,48,49}}]
If its below the subdiagonal and lower triangular, this is okay:
In[8]:=
DeTriangularizableMatrixQ
[LowerTriangularize[matrix,-1]]
Out[8]=
True
In[9]:=
MatrixForm[LowerTriangularize[matrix,-1]]
Out[9]//MatrixForm=
0
0
0
0
0
0
0
8
0
0
0
0
0
0
15
16
0
0
0
0
0
22
23
24
0
0
0
0
29
30
31
32
0
0
0
36
37
38
39
40
0
0
43
44
45
46
47
48
0
In[10]:=
MatrixForm
DeTriangularizeMatrix
[LowerTriangularize[matrix,-1]]
Out[10]//MatrixForm=
0
8
15
22
29
36
43
8
0
16
23
30
37
44
15
16
0
24
31
38
45
22
23
24
0
32
39
46
29
30
31
32
0
40
47
36
37
38
39
40
0
48
43
44
45
46
47
48
0
Here's a table of what's allowed and not allowed.
lower-triangular
upper-triangular
subdiagonal
✓
x
superdiagonal
x
✓
SeeAlso
LowerTriangularize
 
▪
UpperTriangularize
 
▪
LowerTriangularMatrixQ
 
▪
UpperTriangularMatrixQ
 
▪
Diagonal
 
▪
Band
 
▪
Antidiagonal
 
▪
BlockLowerTriangularMatrix
 
▪
BlockUpperTriangularMatrix
 
▪
DeTriangularizeMatrix
RelatedGuides
▪
Matrices
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com