Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
AntidiagonalMatrixQ
​
AntidiagonalMatrixQ
[mat]
gives
True
if
mat
is antidiagonal,and
False
otherwise.
​
​
AntidiagonalMatrixQ
[mat,k]
gives
True
if
mat
has nonzero elements only on the kth antidiagonal matrix, and
False
otherwise.
​
Details and Options

Examples  
(8)
Basic Examples  
(3)
Check if a matrix is an antidiagonal matrix:
In[1]:=
AntidiagonalMatrixQ
[{{0,0,1},{0,3,0},{2,0,0}}]
Out[1]=
True
​
Test if the antidiagonal is above the leading antidiagonal one:
In[1]:=
AntidiagonalMatrixQ
[{{0,2,0},{3,0,0},{0,0,0}},1]
Out[1]=
True
​
An example of a matrix that is not antidiagonal:
In[1]:=
AntidiagonalMatrixQ
[{{0,0,1},{0,2,0},{3,0,0.1}}]
Out[1]=
False
Scope  
(3)

Options  
(1)

Properties & Relations  
(1)

SeeAlso
Antidiagonal
 
▪
AntidiagonalMatrix
 
▪
Diagonal
 
▪
DiagonalMatrix
 
▪
Tr
 
▪
Band
 
▪
DiagonalMatrixQ
RelatedGuides
▪
Matrices
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com