Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
LowerRightTriangularMatrixQ
​
LowerRightTriangularMatrixQ
[matrix]
returns
True
if matrix is a lower right triangular matrix, and
False
otherwise.
​
Details and Options

Examples  
(1)
Basic Examples  
(1)
Here a few examples.
A matrix:
In[1]:=
MatrixFormmatrix=
PyramidMatrix
[12]
Out[1]//MatrixForm=
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
1
1
2
3
3
3
3
3
3
3
3
2
1
1
2
3
4
4
4
4
4
4
3
2
1
1
2
3
4
5
5
5
5
4
3
2
1
1
2
3
4
5
6
6
5
4
3
2
1
1
2
3
4
5
6
6
5
4
3
2
1
1
2
3
4
5
5
5
5
4
3
2
1
1
2
3
4
4
4
4
4
4
3
2
1
1
2
3
3
3
3
3
3
3
3
2
1
1
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
In[2]:=
MatrixFormlowerRightTriangularMatrix=
LowerRightTriangularize
[matrix]
Out[2]//MatrixForm=
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
2
1
0
0
0
0
0
0
0
0
0
3
2
1
0
0
0
0
0
0
0
0
4
3
2
1
0
0
0
0
0
0
0
5
4
3
2
1
0
0
0
0
0
0
6
5
4
3
2
1
0
0
0
0
0
6
6
5
4
3
2
1
0
0
0
0
5
5
5
5
4
3
2
1
0
0
0
4
4
4
4
4
4
3
2
1
0
0
3
3
3
3
3
3
3
3
2
1
0
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
In[3]:=
LowerRightTriangularMatrixQ
[lowerRightTriangularMatrix]
Out[3]=
True
Here's an example that is False:
In[4]:=
MatrixForm@
UlamMatrix
[9]
Out[4]//MatrixForm=
65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81
In[5]:=
LowerRightTriangularMatrixQ

65
64
63
62
61
60
59
58
57
66
37
36
35
34
33
32
31
56
67
38
17
16
15
14
13
30
55
68
39
18
5
4
3
12
29
54
69
40
19
6
1
2
11
28
53
70
41
20
7
8
9
10
27
52
71
42
21
22
23
24
25
26
51
72
43
44
45
46
47
48
49
50
73
74
75
76
77
78
79
80
81

Out[5]=
False
SeeAlso
UpperLeftTriangularMatrixQ
 
▪
LowerTriangularMatrixQ
RelatedGuides
▪
Matrices
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com