Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
TopArrowMatrix
​
TopArrowMatrix
[matrix]
forms a top arrow matrix from
matrix
.
​
Examples  
(1)
Basic Examples  
(1)
Here are some example of top area matrices.
The function isn't really designed by 1 by 1 and 2 by 2 matrices:
In[1]:=
MatrixForm@
TopArrowMatrix
[{{1}}]
Out[1]//MatrixForm=
(
1
)
In[2]:=
MatrixForm@
TopArrowMatrix

PyramidMatrix
[2]
Out[2]//MatrixForm=

1
1
0
0

The function is designed for matrices of sizes 3 and up:
In[3]:=
MatrixForm@
TopArrowMatrix

PyramidMatrix
[3]
Out[3]//MatrixForm=
1
1
1
0
2
0
0
0
0
In[4]:=
MatrixForm@
TopArrowMatrix

PyramidMatrix
[4]
Out[4]//MatrixForm=
1
1
1
1
0
2
2
0
0
0
0
0
0
0
0
0
In[5]:=
MatrixForm@
TopArrowMatrix

PyramidMatrix
[5]
Out[5]//MatrixForm=
1
1
1
1
1
0
2
2
2
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
In[6]:=
MatrixForm@
TopArrowMatrix

PyramidMatrix
[6]
Out[6]//MatrixForm=
1
1
1
1
1
1
0
2
2
2
2
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
The function will work with rectangular matrices.
Here is a long wide short rectangular matrix:
In[7]:=
MatrixForm@
TopArrowMatrix
[Partition[Range[30],6]]
Out[7]//MatrixForm=
1
2
3
4
5
6
0
8
9
10
11
0
0
0
15
16
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Here is a tall skinny rectangular matrix:
In[8]:=
MatrixForm@
TopArrowMatrix
[Partition[Range[30],5]]
Out[8]//MatrixForm=
1
2
3
4
5
0
7
8
9
0
0
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SeeAlso
RightArrowMatrix
 
▪
LowerArrowMatrix
 
▪
LeftArrowMatrix
RelatedGuides
▪
Matrices
RelatedLinks
▪
Beecrowd Programming Challenge 1187 Top Area
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com