Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
NewLinearAlgebraPaclet
Guides
Matrices
Symbols
AntidiagonallySymmetrizableMatrixQ
AntidiagonalMatrix
AntidiagonalMatrixQ
Antidiagonal
AntidiagonalTranspose
DesymmetrizedMatrix
DeTriangularizableMatrixQ
DeTriangularizeMatrix
HessianMatrix
JacobianMatrix
LeftArrowMatrix
LowerArrowMatrix
LowerRightTriangularize
LowerRightTriangularMatrixQ
MatrixSymmetrizability
PyramidMatrix
ReflectedDiagonalMatrix
RightArrowMatrix
TopArrowMatrix
UlamMatrix
UpperLeftTriangularize
UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
T
o
p
A
r
r
o
w
M
a
t
r
i
x
T
o
p
A
r
r
o
w
M
a
t
r
i
x
[
m
a
t
r
i
x
]
f
o
r
m
s
a
t
o
p
a
r
r
o
w
m
a
t
r
i
x
f
r
o
m
m
a
t
r
i
x
.
Examples
(
1
)
Basic Examples
(
1
)
Here are some example of top area matrices.
The function isn't really designed by 1 by 1 and 2 by 2 matrices:
I
n
[
1
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
[
{
{
1
}
}
]
O
u
t
[
1
]
/
/
M
a
t
r
i
x
F
o
r
m
=
(
1
)
I
n
[
2
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
P
y
r
a
m
i
d
M
a
t
r
i
x
[
2
]
O
u
t
[
2
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
1
0
0
The function is designed for matrices of sizes 3 and up:
I
n
[
3
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
P
y
r
a
m
i
d
M
a
t
r
i
x
[
3
]
O
u
t
[
3
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
1
1
0
2
0
0
0
0
I
n
[
4
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
P
y
r
a
m
i
d
M
a
t
r
i
x
[
4
]
O
u
t
[
4
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
1
1
1
0
2
2
0
0
0
0
0
0
0
0
0
I
n
[
5
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
P
y
r
a
m
i
d
M
a
t
r
i
x
[
5
]
O
u
t
[
5
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
1
1
1
1
0
2
2
2
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
I
n
[
6
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
P
y
r
a
m
i
d
M
a
t
r
i
x
[
6
]
O
u
t
[
6
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
1
1
1
1
1
0
2
2
2
2
0
0
0
3
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
The function will work with rectangular matrices.
Here is a long wide short rectangular matrix:
I
n
[
7
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
[
P
a
r
t
i
t
i
o
n
[
R
a
n
g
e
[
3
0
]
,
6
]
]
O
u
t
[
7
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
2
3
4
5
6
0
8
9
1
0
1
1
0
0
0
1
5
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Here is a tall skinny rectangular matrix:
I
n
[
8
]
:
=
M
a
t
r
i
x
F
o
r
m
@
T
o
p
A
r
r
o
w
M
a
t
r
i
x
[
P
a
r
t
i
t
i
o
n
[
R
a
n
g
e
[
3
0
]
,
5
]
]
O
u
t
[
8
]
/
/
M
a
t
r
i
x
F
o
r
m
=
1
2
3
4
5
0
7
8
9
0
0
0
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S
e
e
A
l
s
o
R
i
g
h
t
A
r
r
o
w
M
a
t
r
i
x
▪
L
o
w
e
r
A
r
r
o
w
M
a
t
r
i
x
▪
L
e
f
t
A
r
r
o
w
M
a
t
r
i
x
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
M
a
t
r
i
c
e
s
R
e
l
a
t
e
d
L
i
n
k
s
▪
B
e
e
c
r
o
w
d
P
r
o
g
r
a
m
m
i
n
g
C
h
a
l
l
e
n
g
e
1
1
8
7
T
o
p
A
r
e
a
"
"