Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
Matrices
Generate matrices with functions.
Matrix functions for generating matrices
DesymmetrizedMatrix
— a desymmetrized matrix
DeTriangularizableMatrixQ
— test if a matrix is detriangularizable.
DeTriangularizeMatrix
— detriangularize a symmetric matrix that has been lower-triangularized or upper-triangularized
HessianMatrix
— find the Hessian matrix of a multivariate function
MatrixSymmetrizability
— test how easy it is to symmetrize a matrix by computing the number of symmetric elements of the matrix to the total number of elements of the matrix. A symmetric matrix returns 1; a nonsymmetric matrix returns 0.
PyramidMatrix
— generate a pyramid matrix
ReflectedDiagonalMatrix
— generate a reflected diagonal matrix
UlamMatrix
— generate the Ulam matrix
Triangular Matrices
DeTriangularizableMatrixQ
— test if a matrix is detriangularizable.
DeTriangularizeMatrix
— detriangularize a symmetric matrix that has been lower-triangularized or upper-triangularized
LowerRightTriangularize
— build a lower right triangular matrix based on the antidiagonal
LowerRightTriangularMatrixQ
— test if a matrix is a lower right triangular matrix
UpperLeftTriangularize
— build an upper left triangular matrix based on the antidiagonal
UpperLeftTriangularMatrixQ
— test if a matrix is an upper left triangular matrix
LeftArrowMatrix
— form a left arrow matrix
RightArrowMatrix
— form a right arrow matrix
TopArrowMatrix
— form a top arrow matrix
LowerArrowMatrix
— form a lower arrow matrix
Symmetry
DesymmetrizedMatrix
— a desymmetrized matrix
MatrixSymmetrizability
— test how easy it is to symmetrize a matrix by computing the number of symmetric elements of the matrix to the total number of elements of the matrix. A symmetric matrix returns 1; a nonsymmetric matrix returns 0.
Antidiagonal functions
Antidiagonal
— Give the antidiagonal of a matrix
AntidiagonalMatrix
— Create an antidiagonal matrix by giving the antidiagonal
AntidiagonalMatrixQ
— Tests whether a matrix is an antidiagonal matrix.
AntidiagonalTranspose
— transpose a matrix around the antidiagonal
AntidiagonallySymmetrizableMatrixQ
— test if a matrix is symmetric when reflected across the antidiagonal
LowerRightTriangularize
— build a lower right triangular matrix based on the antidiagonal
UpperLeftTriangularize
— build an upper left triangular matrix based on the antidiagonal
Modifying matrices
BoxMatrix
— this could also be described as a ones matrix like OnesMatrix. This is useful when computing the resistance matrix of a graph, I think. In graph theory, the one's matrix is often denoted by J.
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com