Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
AntidiagonalTranspose
​
AntidiagonalTranspose
[matrix]
transposes
matrix
around the antidiagonal.
​
Examples  
(1)
Basic Examples  
(1)
Here are some examples:
In[1]:=
MatrixForm[hilbertMatrix=HilbertMatrix[5]]
Out[1]//MatrixForm=
1
1
2
1
3
1
4
1
5
1
2
1
3
1
4
1
5
1
6
1
3
1
4
1
5
1
6
1
7
1
4
1
5
1
6
1
7
1
8
1
5
1
6
1
7
1
8
1
9
In[2]:=
MatrixForm
AntidiagonalTranspose
[hilbertMatrix]
Out[2]//MatrixForm=
1
9
1
8
1
7
1
6
1
5
1
8
1
7
1
6
1
5
1
4
1
7
1
6
1
5
1
4
1
3
1
6
1
5
1
4
1
3
1
2
1
5
1
4
1
3
1
2
1
In[3]:=
MatrixFormtwoByTwoMatrix=
1
2
2
3

Out[3]//MatrixForm=

1
2
2
3

In[4]:=
MatrixForm
AntidiagonalTranspose
[twoByTwoMatrix]
Out[4]//MatrixForm=

3
2
2
1

SeeAlso
AntidiagonallySymmetrizableMatrixQ
RelatedGuides
▪
Matrices
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com