Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

NewLinearAlgebraPaclet

Guides

  • Matrices

Symbols

  • AntidiagonallySymmetrizableMatrixQ
  • AntidiagonalMatrix
  • AntidiagonalMatrixQ
  • Antidiagonal
  • AntidiagonalTranspose
  • DesymmetrizedMatrix
  • DeTriangularizableMatrixQ
  • DeTriangularizeMatrix
  • HessianMatrix
  • JacobianMatrix
  • LeftArrowMatrix
  • LowerArrowMatrix
  • LowerRightTriangularize
  • LowerRightTriangularMatrixQ
  • MatrixSymmetrizability
  • PyramidMatrix
  • ReflectedDiagonalMatrix
  • RightArrowMatrix
  • TopArrowMatrix
  • UlamMatrix
  • UpperLeftTriangularize
  • UpperLeftTriangularMatrixQ
PeterBurbery`NewLinearAlgebraPaclet`
DesymmetrizedMatrix
​
DesymmetrizedMatrix
[matrix]
gives a matrix where the parts of the matrix that stop it from being symmetric are left and the parts that are symmetric become 0, in effect returning a desymmetrized matrix by desymmetrizing the input matrix
matrix
.
​
Details and Options

Examples  
(2)
Basic Examples  
(1)
If a matrix is completely symmetric, the output will be a 0 matrix.
In[1]:=
MatrixForm
PyramidMatrix
[7]
Out[1]//MatrixForm=
1
1
1
1
1
1
1
1
2
2
2
2
2
1
1
2
3
3
3
2
1
1
2
3
4
3
2
1
1
2
3
3
3
2
1
1
2
2
2
2
2
1
1
1
1
1
1
1
1
In[2]:=
SymmetricMatrixQ
PyramidMatrix
[7]
Out[2]=
True
In[3]:=
MatrixForm
DesymmetrizedMatrix

PyramidMatrix
[7]
Out[3]//MatrixForm=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
If some of the elements are not symmetric, and its hard to tell which ones these are, this function will make it easy to isolate them.
In[4]:=
MatrixForm
PyramidMatrix
[18]
Out[4]//MatrixForm=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
3
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I'm going to randomly change one.
In[5]:=
DesymmetrizedMatrix

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
4
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Out[5]=
SparseArray
Specified elements: 2
Dimensions: {18,18}

Here is the array in matrix form:
In[6]:=
MatrixForm
DesymmetrizedMatrix

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
4
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Out[6]//MatrixForm=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
To find what element is not symmetric, use the following example. The big matrix has been iconized to save space in the input field. I am using HeadsFalse to avoid getting the position of the head List. I am using the level specification {2} so I don't get rows or columns. I am getting the position of everything except 0, which is the default. I am using Normal because it won't work without it as a SparseArray.
In[7]:=
PositionNormal
DesymmetrizedMatrix

matrix example
,Except[0],{2},HeadsFalse
Out[7]=
{{14,16},{16,14}}
I can now highlight the part that is different:
In[8]:=
MatrixFormReplaceAt
matrix example
,x_Highlighted[x,StripOnInputTrue],PositionNormal
DesymmetrizedMatrix

matrix example
,Except[0],{2},HeadsFalse
Out[8]//MatrixForm=
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
8
8
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
7
7
7
7
7
6
5
4
3
2
1
1
2
3
4
5
6
6
6
6
6
6
6
6
5
4
3
2
1
1
2
3
4
5
5
5
5
5
5
5
5
5
5
4
4
2
1
1
2
3
4
4
4
4
4
4
4
4
4
4
4
4
3
2
1
1
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Here is an example where the matrix is completely unsymmetric.
In[9]:=
MatrixForm[unsymmetricMatrix=Partition[Range[49],7]]
Out[9]//MatrixForm=
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
In[10]:=
MatrixForm
DesymmetrizedMatrix
[unsymmetricMatrix]
Out[10]//MatrixForm=
0
-3
-6
-9
-12
-15
-18
3
0
-3
-6
-9
-12
-15
6
3
0
-3
-6
-9
-12
9
6
3
0
-3
-6
-9
12
9
6
3
0
-3
-6
15
12
9
6
3
0
-3
18
15
12
9
6
3
0

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com