Wolfram Language Paclet Repository
Community-contributed installable additions to the Wolfram Language
Details and options | |
Quasi Probability Representations and Examples | |
Advanced Examples | |
SetFockSpaceSize | sets size as the default truncation dimension , after called all the other definitions can use this default size |
OperatorVariance | Variance of the operator op for a state ψ |
FockState n | n-th Fock state in a basis of dimension size |
FockState n 1 n 2 | Multimode Fock state with occupation numbers n i |
CoherentState CoherentState | Parametric state representing a non-normalized coherent state in a basis of dimension size , the complex amplitude is a parameter |
ThermalState | Thermal mixed state with average number of photons nbar in a basis of dimension size |
CatState CatState | Parametric general cat state representing a superposition of coherent states in a basis of dimension size, the complex amplitude and the phase are parameters |
AnnihilationOperator | Bosonic annihilation operator in a truncated Fock spacewith basis dimension size and qudit order ord |
DisplacementOperator | Phase space displacement operator of a single mode with complex amplitude alpha , basis dimension size and qudit order ord |
SqueezeOperator | Squeeze operator of a single mode with complex parameter xi , basis dimension size and qudit order ord |
QuadratureOperators | X 1 X 2 |
PhaseShiftOperator | Phase space rotation operator with rotation angle θ, basis dimension size and qudit order ord |
BeamSplitterOperator | Two mode beam-splitter operator, θ indicates the reflectivity, ϕ the relative phase in a basis of dimension size and qudit order ord |
DisplacementOperator | Exp[α † a * α |
SqueezeOperator | Exp 1 2 2 a †2 a |
PhaseShiftOperator | Exp[ θ † a |
BeamSplitterOperator | Expθ ϕ a 1 † a 2 - ϕ † a 1 a 2 |
QuadratureOperators | X 1 1 2 † a X 2 1 2 † a |
DisplacementOperator | st can be "Normal", "Weak" or "Antinormal".For "Normal", one gets: Exp[-|α 2 | † a Exp[α † a Exp[|α 2 | † a |
SqueezeOperator | st ξ= θ r Exp[- 1 2 θ †2 a † a 1 2 1 2 -θ 2 a Exp[ 1 2 2 a †2 a Exp[ 1 2 -θ 2 a † a 1 2 1 2 θ †2 a |
|
|
|
|
|