Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SudokuHints

Guides

  • Sudoku Hints

Tech Notes

  • Logical Rules for Solving a Sudoku
  • Representation of a Sudoku
  • String Representation of a Sudoku

Symbols

  • BackTracking
  • bla
  • CandidateSet
  • CellSize
  • Clues
  • ColoredCells
  • ColoredGroupColor
  • ColoredGroups
  • CommonCellColor
  • ConjugateLists
  • DiskCells
  • Disks
  • DoubleCandidate
  • DoubleCandidate
  • EditClues
  • EditColoredGroups
  • EditLineGroups
  • EditOutlinedGroups
  • EditSudoku
  • EnterClues
  • EnterSudoku
  • ExcludeCommonCells
  • ExportSudoku
  • ExtendSudoku
  • ExtraBlockCellColor
  • ExtraBlocks
  • GenerateSudokus
  • HiddenPair
  • HiddenPairs
  • HiddenQuadruple
  • HiddenQuadruples
  • HiddenSingle
  • HiddenSingles
  • HiddenTriple
  • HiddenTriples
  • Hints
  • IncludeCandidates
  • LineGroups
  • LockedCandidates
  • MaxClues
  • MaxSolutions
  • MaxSteps
  • MonitorSteps
  • NumericalString
  • OutlinedGroups
  • Pair
  • Pairs
  • QuadrupleCandidate
  • Quadruple
  • ReduceClues
  • ReduceSudoku
  • SetDisplay
  • SetDisplayOptions
  • SetSdokuOptions
  • SetSudokuOptions
  • ShowCandidates
  • ShowInfo
  • Single
  • Singles
  • SolveSudoku
  • SudokuFromString
  • SudokuHints
  • SudokuInfo
  • Sudoku
  • SudokuToString
  • SwordFish
  • ThreeGroups
  • TripleCandidate
  • Triple
  • Triples
  • XRule
  • XXXMaxSteps
  • XYChain
  • XYZWing
  • YWing
  • ZZZExtraBlocks
  • ZZZLockedCandidates
  • $AllRules
  • $Sudoku
FredSimons`SudokuHints`
ReduceClues
​
ReduceClues
[sudoku,rules,print]
tries to find smaller sets of clues that give the same unique solution with the given rules.
​
Details and Options

Examples  
(2)
Basic Examples  
(2)
This gives a standard sudoku of about 29 clues that can be solved with the rules Single and HiddenSingle:
In[1]:=
rules={"Single","HiddenSingle"};​​While​​sud=
ExtendSudoku

Sudoku
[],
MaxClues
29;​​info=
SudokuInfo
[sud,rules];​​KeyExistsQ[info,"BackTracking"];​​sud​​info
Out[3]=
Out[4]=
Solutions1,Clues29,Singles12
This reduces the clues of the sudoku:
In[5]:=
ReduceClues
[sud,rules]
10WxfKFJHolsANJ6HpedL4Vd4Cj%Sh1hnsnLEndkR$KxiSolutions1,Clues28,Singles12
10saWXd$PNiMSVjt!O4KDYyFXgd@37%gnDNIK@#w6XTcmSolutions1,Clues28,Singles14
10saWXd$PNiMSVjt!O4KDYyFXgd@38BzRij!bxX6GT@g0Solutions1,Clues28,Singles14
10saWXd$PNiMSVjt!O4KDYyFXgd@38BzRiltFW$D5xTEGSolutions1,Clues28,Singles12
10WxfKFJHolq8%k1om!#QwR%sCtfRwl!Ac@8H2oVLBiM0Solutions1,Clues27,Singles12
10WxfKFJHolsANJ6HpedL4Vd4Cj%Sh1hnsnLEndkR1lg0Solutions1,Clues27,Singles14
10WxfKFJHolsANJ6HpedL4Vd4Cj%Sh1hnslSb87dbeE1qSolutions1,Clues27,Singles14
10WxfKFJHolsANJ6FLBQ%iOvIX3qE4O@IJZ2NB1jmPV88Solutions1,Clues27,Singles13
10WxBH3&hGbF1QIIfQ4V7N12CWr4eXzMHqeo%&ZAw1uOuSolutions1,Clues26,Singles14
10WxfKFJHolq8%k1om!#QwR%sCtfRwl!AczFdTIOUsbW8Solutions1,Clues26,Singles14
10WxfKFBQP#ncTG&ZxBfSTJEn$jF2BqN4bKjL0FFOM#AmSolutions1,Clues26,Singles15
10WxBH3&hGbF1QIIfQ4V7N12CWr4eXzMHqcwLQ33&inY#Solutions1,Clues25,Singles15
10WxBH3&hGbF1QIIfQ4V7N12B9WYd5bb4u1V!8AQp8x%WSolutions1,Clues25,Singles18,HiddenSingles5
10WxBH3&hGbF1QIIfQ4V7N12CWr4eXm3dLGE4UYtvmFViSolutions1,Clues25,Singles14,HiddenSingles2
10WxBH3xpxsCUuvGQaL88zyI8HgkEs$pBo%K2#&!zD8DaSolutions1,Clues25,Singles15,HiddenSingles3
10WxBH3&hGbF1QIIfQ4V7N12CWr4eXm3dLELQv2m&N8fqSolutions1,Clues24,Singles18,HiddenSingles2
10WxBH3&hGbE&6eHRDblQlmc!3LXhyFg$v%JcSjBk0qBiSolutions1,Clues24,Singles17,HiddenSingles2
10WxBH3&hGbE&6eHRDblQlmc!3LXhy2OJQfohxiujlBIWSolutions1,Clues23,Singles14,HiddenSingles4
​
We construct a double sudoku with one common block , about 54 clues and a unique soluton. Then we reduce the clues with only three rules, Single, HiddenSingle and BackTracking. When we see a result with BackTracking in the info, this only means that the sudoku cannot be solved with the rules Single and HiddenSingle alone.
In[1]:=
sud=
ExtendSudoku

Sudoku
[{1,1},{7,7}],
ExcludeCommonCells
True,
MaxClues
54;​​
ReduceClues
[sud,{"Single","HiddenSingle","BackTracking"},#["Clues"]<46&]
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymontB!vPOgVTCMgC7$XYa$HxHXsg8m!pTICCbVdJ||439117p3D@gSolutions1,Clues45,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrXABLPxUDZV%l44qklWqaLRU$GJu3ctZlTRuDvP@ldU3s6jf6t||439117p3D@gSolutions1,Clues45,Singles18,HiddenSingles5
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrXABLPxUDZV%l44qklWqaLRU$GJu3ctZlTRuDvWypH!50k#rzH||439117p3D@gSolutions1,Clues45,Singles27,HiddenSingles1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm4ACLmTYyqcopMevV5R||439117p3D@gSolutions1,Clues44,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymontB!vPOgVTCMgC7$XYa$HxHXsg8m!pTICCbVdE||439117p3D@gSolutions1,Clues44,Singles2,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymontB!vPOgVTCMgC7$XYa$HxHXsg1px4$G$eIIql||439117p3D@gSolutions1,Clues44,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuSADHR0WEPMql||439117p3D@gSolutions1,Clues43,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuLD9c!&Hg69%7||439117p3D@gSolutions1,Clues42,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuSADHR0WEPMqb||439117p3D@gSolutions1,Clues42,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFiw$XXYa6EaSYnXO7oB&xwq6dHzDAaNFqX$pWWvevEu2eeD!ANcphvkN||439117p3D@gSolutions1,Clues42,Singles4,HiddenSingles4,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuLD9c!&HeE@Ut||439117p3D@gSolutions1,Clues41,Singles3,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuLD9c!&Hg69$$||439117p3D@gSolutions1,Clues41,Singles4,HiddenSingles5,BackTracking1
9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm49#3WuLD9c!&HeE@Uj||439117p3D@gSolutions1,Clues40,Singles3,HiddenSingles5,BackTracking1
In[2]:=
SudokuInfo
["9ItkyhbxAU%6@hDG0jxKy%bFjSh4PrWe!pC%J&ymont5PG%1wUB%i88FddPrm4ACLmTYyqcopMevV5R||439117p3D@g"]
Out[2]=
Solutions1,Clues44,Singles25,HiddenSingles8,CandidateSets3,HiddenPairs1,Pairs1,ThreeGroups1,XYChains1
SeeAlso
Sudoku
 
▪
ExtendSudoku
 
▪
SudokuInfo
 
▪
GenerateSudokus
RelatedGuides
▪
Sudoku Hints
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com