Wolfram Language Paclet Repository

Community-contributed installable additions to the Wolfram Language

Primary Navigation

    • Cloud & Deployment
    • Core Language & Structure
    • Data Manipulation & Analysis
    • Engineering Data & Computation
    • External Interfaces & Connections
    • Financial Data & Computation
    • Geographic Data & Computation
    • Geometry
    • Graphs & Networks
    • Higher Mathematical Computation
    • Images
    • Knowledge Representation & Natural Language
    • Machine Learning
    • Notebook Documents & Presentation
    • Scientific and Medical Data & Computation
    • Social, Cultural & Linguistic Data
    • Strings & Text
    • Symbolic & Numeric Computation
    • System Operation & Setup
    • Time-Related Computation
    • User Interface Construction
    • Visualization & Graphics
    • Random Paclet
    • Alphabetical List
  • Using Paclets
    • Get Started
    • Download Definition Notebook
  • Learn More about Wolfram Language

SudokuHints

Guides

  • Sudoku Hints

Tech Notes

  • Logical Rules for Solving a Sudoku
  • Representation of a Sudoku
  • String Representation of a Sudoku

Symbols

  • BackTracking
  • bla
  • CandidateSet
  • CellSize
  • Clues
  • ColoredCells
  • ColoredGroupColor
  • ColoredGroups
  • CommonCellColor
  • ConjugateLists
  • DiskCells
  • Disks
  • DoubleCandidate
  • DoubleCandidate
  • EditClues
  • EditColoredGroups
  • EditLineGroups
  • EditOutlinedGroups
  • EditSudoku
  • EnterClues
  • EnterSudoku
  • ExcludeCommonCells
  • ExportSudoku
  • ExtendSudoku
  • ExtraBlockCellColor
  • ExtraBlocks
  • GenerateSudokus
  • HiddenPair
  • HiddenPairs
  • HiddenQuadruple
  • HiddenQuadruples
  • HiddenSingle
  • HiddenSingles
  • HiddenTriple
  • HiddenTriples
  • Hints
  • IncludeCandidates
  • LineGroups
  • LockedCandidates
  • MaxClues
  • MaxSolutions
  • MaxSteps
  • MonitorSteps
  • NumericalString
  • OutlinedGroups
  • Pair
  • Pairs
  • QuadrupleCandidate
  • Quadruple
  • ReduceClues
  • ReduceSudoku
  • SetDisplay
  • SetDisplayOptions
  • SetSdokuOptions
  • SetSudokuOptions
  • ShowCandidates
  • ShowInfo
  • Single
  • Singles
  • SolveSudoku
  • SudokuFromString
  • SudokuHints
  • SudokuInfo
  • Sudoku
  • SudokuToString
  • SwordFish
  • ThreeGroups
  • TripleCandidate
  • Triple
  • Triples
  • XRule
  • XXXMaxSteps
  • XYChain
  • XYZWing
  • YWing
  • ZZZExtraBlocks
  • ZZZLockedCandidates
  • $AllRules
  • $Sudoku
FredSimons`SudokuHints`
DoubleCandidate
​
DoubleCandidate
[sudoku]
shows one of the reductions in a sudoku due to rule double candidate.
​
Details and Options

Examples  
(2)
Basic Examples  
(2)
In[1]:=
DoubleCandidates["007000200000704600000201500026000057000000000570000380004109000005806000008000900&&&&090H0P0X0f0n0v0$15010B0L0V0f0p0z131D"]
Out[1]=
R9C5(3,4,5,7), R9C9(1,3,4,5,6)
On the diagonal, the yellow cells R9C1, R5C5 are the only cells that contain the candidate 2, so this number has to be placed in one of these two cells. The green cells R9C5 and R9C9 see both yellow cells, so the candidate 2 can be removed from these cells.
​
In[1]:=
DoubleCandidates["c0A0K0U0e0q0y1q2024122E2O363G3Q3f4J4U1C1M2Z2i3m3u505D6M1Y1g2t2#4H5a5i5o723%5R6e6p7u7#9IAUAj4c4q4w5y636E747E8Z6u8B8M9S9eAoAyB2BC7T7Y7i8c8k8u8%98AK9m9wA0ABBSBWBgBqB#"]
Out[1]=
R1C2(3,7,9), R2C3(3,4,7,8), R5C3(3,7), R6C3(7), R6C6(3,7,9)
In this example, the rule can be applied three times.
In the second row, the candidate 5 is found only in the two yellow cells R2C2 and R2C3 and therefore has to be placed in one of these cells. Both cells are seen from the green cells R1C2 and R2C3(!) and therefore the candidate 5 can be removed from these cells.
Similarly, in row 5, the yellow cells R5C3 and R5C4 are the only cells that contain the candidate 3, so this candidate has to be placed in one of these cells. These two cells are seen from the green cells R5C3(!) and R6C3 and therefore the candidate 3 can be removed form these cells.
Finally, the yellow cells R6C3 and R4C6 are the only cells in the cental jigsaw block that contain the candidate 6, so this candidate has to be placed in one of these cells. The green cell R6C6 sees both yellow cells and therefore the candidate 6 can be removed from the cell R6C6.
SeeAlso
$AllRules
 
▪
Hints
 
▪
ReduceSudoku
 
▪
LockedCandidates
RelatedGuides
▪
Sudoku Hints
""

© 2025 Wolfram. All rights reserved.

  • Legal & Privacy Policy
  • Contact Us
  • WolframAlpha.com
  • WolframCloud.com