Wolfram Language
Paclet Repository
Community-contributed installable additions to the Wolfram Language
Primary Navigation
Categories
Cloud & Deployment
Core Language & Structure
Data Manipulation & Analysis
Engineering Data & Computation
External Interfaces & Connections
Financial Data & Computation
Geographic Data & Computation
Geometry
Graphs & Networks
Higher Mathematical Computation
Images
Knowledge Representation & Natural Language
Machine Learning
Notebook Documents & Presentation
Scientific and Medical Data & Computation
Social, Cultural & Linguistic Data
Strings & Text
Symbolic & Numeric Computation
System Operation & Setup
Time-Related Computation
User Interface Construction
Visualization & Graphics
Random Paclet
Alphabetical List
Using Paclets
Create a Paclet
Get Started
Download Definition Notebook
Learn More about
Wolfram Language
SudokuHints
Guides
Sudoku Hints
Tech Notes
Logical Rules for Solving a Sudoku
Representation of a Sudoku
String Representation of a Sudoku
Symbols
BackTracking
bla
CandidateSet
CellSize
Clues
ColoredCells
ColoredGroupColor
ColoredGroups
CommonCellColor
ConjugateLists
DiskCells
Disks
DoubleCandidate
DoubleCandidate
EditClues
EditColoredGroups
EditLineGroups
EditOutlinedGroups
EditSudoku
EnterClues
EnterSudoku
ExcludeCommonCells
ExportSudoku
ExtendSudoku
ExtraBlockCellColor
ExtraBlocks
GenerateSudokus
HiddenPair
HiddenPairs
HiddenQuadruple
HiddenQuadruples
HiddenSingle
HiddenSingles
HiddenTriple
HiddenTriples
Hints
IncludeCandidates
LineGroups
LockedCandidates
MaxClues
MaxSolutions
MaxSteps
MonitorSteps
NumericalString
OutlinedGroups
Pair
Pairs
QuadrupleCandidate
Quadruple
ReduceClues
ReduceSudoku
SetDisplay
SetDisplayOptions
SetSdokuOptions
SetSudokuOptions
ShowCandidates
ShowInfo
Single
Singles
SolveSudoku
SudokuFromString
SudokuHints
SudokuInfo
Sudoku
SudokuToString
SwordFish
ThreeGroups
TripleCandidate
Triple
Triples
XRule
XXXMaxSteps
XYChain
XYZWing
YWing
ZZZExtraBlocks
ZZZLockedCandidates
$AllRules
$Sudoku
FredSimons`SudokuHints`
H
i
n
t
s
H
i
n
t
s
[
s
u
d
o
k
u
,
r
u
l
e
s
]
o
p
e
n
s
a
t
o
o
l
f
o
r
s
o
l
v
i
n
g
t
h
e
s
u
d
o
k
u
i
n
t
e
r
a
c
t
i
v
e
l
y
.
A
t
a
n
y
t
i
m
e
i
t
s
h
o
w
s
a
n
d
m
a
y
e
x
p
l
a
i
n
a
l
l
p
o
s
s
i
b
l
e
r
e
d
u
c
t
i
o
n
s
.
W
h
i
c
h
o
f
t
h
e
r
e
d
u
c
t
i
o
n
s
w
i
l
l
b
e
a
p
p
l
i
e
d
c
a
n
b
e
s
e
l
e
c
t
e
d
.
D
e
t
a
i
l
s
a
n
d
O
p
t
i
o
n
s
Examples
(
2
)
Basic Examples
(
2
)
I
n
[
1
]
:
=
H
i
n
t
s
[
"
1
P
9
N
w
a
f
1
P
v
d
3
U
%
A
z
u
v
7
1
d
S
r
q
O
0
u
Y
Q
V
6
J
q
A
V
a
X
z
E
1
Z
o
r
K
"
]
Apply some reductions. Then press the button
$Sudoku
.
I
n
[
2
]
:
=
S
u
d
o
k
u
T
o
S
t
r
i
n
g
$
S
u
d
o
k
u
,
I
n
c
l
u
d
e
C
a
n
d
i
d
a
t
e
s
T
r
u
e
O
u
t
[
2
]
=
1
P
9
N
w
a
f
9
#
L
%
9
W
2
9
3
f
0
#
n
L
J
4
T
0
#
S
&
3
n
T
Z
I
v
c
k
I
o
%
&
y
k
L
K
|
$
Z
d
Y
O
4
%
f
O
E
L
F
2
e
#
h
W
o
f
#
p
$
U
m
F
R
a
V
z
$
z
B
A
2
Z
e
M
#
4
J
s
i
L
1
T
C
k
3
x
W
O
5
C
D
7
l
1
D
X
P
h
G
c
t
U
v
m
Q
z
S
!
X
u
%
m
H
%
U
Q
y
U
T
5
B
#
2
r
f
n
B
V
R
J
Y
4
A
D
n
k
E
e
z
Y
q
f
R
!
h
K
t
x
U
6
c
W
9
i
2
Z
I
n
[
3
]
:
=
S
u
d
o
k
u
F
r
o
m
S
t
r
i
n
g
[
%
]
O
u
t
[
3
]
=
The function may be used with less rules. Apply the rule HiddenSingles twice:
I
n
[
1
]
:
=
H
i
n
t
s
[
"
1
P
9
N
w
a
f
1
P
v
d
3
U
%
A
z
u
v
7
1
d
S
r
q
O
0
u
Y
Q
V
6
J
q
A
V
a
X
z
E
1
Z
o
r
K
"
,
{
"
S
i
n
g
l
e
s
"
,
"
H
i
d
d
e
n
S
i
n
g
l
e
s
"
}
]
S
e
e
A
l
s
o
S
u
d
o
k
u
I
n
f
o
▪
S
o
l
v
e
S
u
d
o
k
u
T
e
c
h
N
o
t
e
s
▪
L
o
g
i
c
a
l
R
u
l
e
s
f
o
r
S
o
l
v
i
n
g
a
S
u
d
o
k
u
R
e
l
a
t
e
d
G
u
i
d
e
s
▪
S
u
d
o
k
u
H
i
n
t
s
"
"