Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Perform a spectral decomposition (diagonalization) on a quantum state or operator
ResourceFunction["QuantumSpectralDecomposition"][QuantumDiscreteState[…]] performs a spectral decomposition on the specified QuantumDiscreteState. | |
ResourceFunction["QuantumSpectralDecomposition"][QuantumDiscreteOperator[…]] performs a spectral decomposition on the specified QuantumDiscreteOperator. | |
ResourceFunction["QuantumSpectralDecomposition"][QuantumMeasurementOperator[…]] performs a spectral decomposition on the specified QuantumMeasurementOperator. | |
ResourceFunction["QuantumSpectralDecomposition"][QuantumHamiltonianOperator[…]] performs a spectral decomposition on the specified QuantumHamiltonianOperator. | |
ResourceFunction["QuantumSpectralDecomposition"][QuantumCircuitOperator[…]] performs a spectral decomposition on the specified QuantumCircuitOperator, represented as a QuantumDiscreteOperator. |
Create a two-qubit pure discrete quantum state in the computational basis (default):
In[1]:= | ![]() |
Out[1]= | ![]() |
In[2]:= | ![]() |
Out[2]= | ![]() |
In[3]:= | ![]() |
Out[3]= | ![]() |
Perform a spectral decomposition of the state, resulting in a pure state with a diagonalized density matrix and a new (spectral-decomposed) basis:
In[4]:= | ![]() |
Out[4]= | ![]() |
In[5]:= | ![]() |
Out[5]= | ![]() |
In[6]:= | ![]() |
Out[6]= | ![]() |
Show the basis elements of the new (spectral-decomposed) basis:
In[7]:= | ![]() |
Out[7]= | ![]() |
Perform a spectral decomposition of a single-qubit mixed discrete quantum state in the computational basis instead, resulting in a mixed state with a diagonalized density matrix:
In[8]:= | ![]() |
Out[8]= | ![]() |
In[9]:= | ![]() |
Out[9]= | ![]() |
In[10]:= | ![]() |
Out[10]= | ![]() |
In[11]:= | ![]() |
Out[11]= | ![]() |
Show the new (spectral-decomposed) basis:
In[12]:= | ![]() |
Out[12]= | ![]() |
In[13]:= | ![]() |
Out[13]= | ![]() |
Perform a spectral decomposition of an arity-2 QuantumDiscreteOperator object, resulting in a QuantumDiscreteOperator object with a diagonalized matrix representation:
In[14]:= | ![]() |
Out[14]= | ![]() |
Show the new (spectral-decomposed) basis:
In[15]:= | ![]() |
Out[15]= | ![]() |
In[16]:= | ![]() |
Out[16]= | ![]() |
Perform a spectral decomposition of an arity-3 projection-valued QuantumMeasurementOperator object, resulting in a projection-valued QuantumMeasurementOperator object with a diagonalized matrix representation:
In[17]:= | ![]() |
Out[17]= | ![]() |
Show the new (spectral decomposed) basis:
In[18]:= | ![]() |
Out[18]= | ![]() |
In[19]:= | ![]() |
Out[19]= | ![]() |
Perform a spectral decomposition on an arity-1 QuantumHamiltonianOperator object, resulting in a QuantumHamiltonianOperator object with a diagonalized matrix representation:
In[20]:= | ![]() |
Out[20]= | ![]() |
Show the new (spectral-decomposed) basis:
In[21]:= | ![]() |
Out[21]= | ![]() |
In[22]:= | ![]() |
Out[22]= | ![]() |
Perform a spectral decomposition of an arity-2 QuantumCircuitOperator object, resulting in a QuantumDiscreteOperator object with a diagonalized matrix representation:
In[23]:= | ![]() |
Out[23]= | ![]() |
In[24]:= | ![]() |
Out[24]= | ![]() |
Show the resulting operator association:
In[25]:= | ![]() |
Out[25]= | ![]() |
Show the new (spectral-decomposed) basis:
In[26]:= | ![]() |
Out[26]= | ![]() |
In[27]:= | ![]() |
Out[27]= | ![]() |
QuantumSpectralDecomposition can perform spectral decompositions of quantum objects in arbitrary bases:
In[28]:= | ![]() |
Out[28]= | ![]() |
In[29]:= | ![]() |
Out[29]= | ![]() |
In[30]:= | ![]() |
Out[30]= | ![]() |
Perform spectral decompositions of higher-dimensional quantum objects:
In[31]:= | ![]() |
Out[31]= | ![]() |
In[32]:= | ![]() |
Out[32]= | ![]() |
In[33]:= | ![]() |
Out[33]= | ![]() |
This work is licensed under a Creative Commons Attribution 4.0 International License