Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Partially trace out specified subsystems of a quantum basis, state or operator
ResourceFunction["QuantumPartialTrace"][QuantumBasis[…],order] returns the specified QuantumBasis object with the subsystems indexed by order traced out. | |
ResourceFunction["QuantumPartialTrace"][QuantumDiscreteState[…],order] returns the specified QuantumDiscreteState object with the subsystems indexed by order traced out. | |
ResourceFunction["QuantumPartialTrace"][QuantumDiscreteOperator[…],order] returns the specified QuantumDiscreteOperator object with the subsystems indexed by order traced out. | |
ResourceFunction["QuantumPartialTrace"][QuantumMeasurementOperator[…],order] returns the specified QuantumMeasurementOperator object with the subsystems indexed by order traced out. | |
ResourceFunction["QuantumPartialTrace"][QuantumHamiltonianOperator[…],order] returns the specified QuantumHamiltonianOperator object with the subsystems indexed by order traced out. | |
ResourceFunction["QuantumPartialTrace"][QuantumCircuitOperator[…],order] returns the (operator representation of the) specified QuantumCircuitOperator object with the subsystems indexed by order traced out. |
Partially trace out qubits 5, 3 and 1 from a five-qubit Pauli-X QuantumBasis object to obtain a two-qubit QuantumBasis object:
| In[1]:= |
| Out[1]= | ![]() |
| In[2]:= |
| Out[2]= |
| In[3]:= |
| Out[3]= | ![]() |
Partially trace out qubits 3 and 2 from a three-qubit pure QuantumDiscreteState object to obtain a single-qubit pure QuantumDiscreteState object:
| In[4]:= | ![]() |
| Out[4]= | ![]() |
| In[5]:= |
| Out[5]= |
| In[6]:= |
| Out[6]= |
On the other hand, if we partially trace out qubits 3 and 1 instead, then we obtain a single-qubit mixed QuantumDiscreteState object:
| In[7]:= |
| Out[7]= |
| In[8]:= |
| Out[8]= |
| In[9]:= |
| Out[9]= |
Partially trace out qubit 2 from a two-qubit mixed QuantumDiscreteState object to obtain a single-qubit mixed QuantumDiscreteState object:
| In[10]:= | ![]() |
| Out[10]= | ![]() |
| In[11]:= |
| Out[11]= |
| In[12]:= |
| Out[12]= |
On the other hand, if we partially trace out qubit 1 instead, then we obtain a single-qubit pure QuantumDiscreteState object:
| In[13]:= |
| Out[13]= |
| In[14]:= |
| Out[14]= |
Partially trace out qubit 1 from an arity-3 QuantumDiscreteOperator object to obtain an arity-2 QuantumDiscreteOperator object:
| In[15]:= | ![]() |
| Out[15]= | ![]() |
| In[16]:= |
| Out[16]= | ![]() |
| In[17]:= |
| Out[17]= |
Partially trace out qubits 2 and 1 instead, to obtain an arity-1 QuantumDiscreteOperator object:
| In[18]:= |
| Out[18]= |
| In[19]:= |
| Out[19]= |
Partially trace out qubit 4 from an arity-4 projection-valued QuantumMeasurementOperator object to obtain an arity-3 QuantumMeasurementOperator object:
| In[20]:= | ![]() |
| Out[20]= | ![]() |
| In[21]:= |
| Out[21]= |
| In[22]:= |
| Out[22]= |
Partially trace out qubits 3 and 2 instead, to obtain an arity-2 QuantumMeasurementOperator object:
| In[23]:= |
| Out[23]= | ![]() |
| In[24]:= |
| Out[24]= |
Partially trace out qubit 2 from an arity-2 positive operator-valued QuantumMeasurementOperator object to obtain an arity-1 positive operator-valued QuantumMeasurementOperator object:
| In[25]:= | ![]() |
| Out[25]= | ![]() |
| In[26]:= |
| Out[26]= |
Partially trace out qubit 1 instead:
| In[27]:= |
| Out[27]= |
Partially trace out qubit 1 from an arity-2 QuantumHamiltonianOperator object to obtain an arity-1 QuantumHamiltonianOperator object:
| In[28]:= | ![]() |
| Out[28]= | ![]() |
| In[29]:= |
| Out[29]= |
Partially trace out qubit 2 instead:
| In[30]:= |
| Out[30]= |
Partially trace out qubit 3 from an arity-3 QuantumCircuitOperator object to obtain an arity-2 QuantumDiscreteOperator object:
| In[31]:= | ![]() |
| Out[31]= | ![]() |
| In[32]:= |
| Out[32]= |
| In[33]:= |
| Out[33]= | ![]() |
Partially trace out qubits 3 and 1 instead, to obtain an arity-1 QuantumDiscreteOperator object:
| In[34]:= |
| Out[34]= |
| In[35]:= |
| Out[35]= | ![]() |
Partially trace over higher-dimensional quantum objects:
| In[36]:= | ![]() |
| Out[36]= | ![]() |
| In[37]:= |
| Out[37]= | ![]() |
| In[38]:= |
| Out[38]= |
When taking the partial trace of a QuantumDiscreteState, QuantumDiscreteOperator, QuantumMeasurementOperator, QuantumHamiltonianOperator or QuantumCircuitOperator object, QuantumPartialTrace will also compute the partial trace of the associated QuantumBasis objects implicitly:
| In[39]:= | ![]() |
| Out[39]= |
| In[40]:= |
| Out[40]= |
| In[41]:= |
| Out[41]= |
The resulting basis is equivalent to partially tracing over the original basis:
| In[42]:= |
| Out[42]= |
This work is licensed under a Creative Commons Attribution 4.0 International License