Wolfram Function Repository
Instant-use add-on functions for the Wolfram Language
Function Repository Resource:
Retrieve a list of all dependent variables for a given expression
ResourceFunction["AllDependentVariables"][expr,ivar] gives all variables dependent on ivar within a given expr. |
Use AllDependentVariables to get the expression that matches to be a mathematical solution:
In[1]:= |
Out[1]= |
Use AllDependentVariables to get the expressions that match dependent variable:
In[2]:= |
Out[2]= |
Use AllDependentVariables with a list of complicated expressions:
In[3]:= |
Out[3]= |
Use AllDependentVariables with an inhomogeneous first-order ordinary differential equation:
In[4]:= |
Out[4]= |
Use AllDependentVariables with a differential equation with a piecewise coefficient:
In[5]:= |
Out[5]= |
Use AllDependentVariables with a system of delay differential equations:
In[6]:= |
Out[6]= |
Use AllDependentVariables with a Caputo fractional differential equation of order 1/2:
In[7]:= |
Out[7]= |
Use AllDependentVariables with a linear first-order partial differential equation:
In[8]:= |
Out[8]= |
Use AllDependentVariables with a singular Abel integral equation:
In[9]:= |
Out[9]= |
Find dependent variables present after reducing coefficients modulo 2:
In[10]:= |
Out[10]= |
For polynomials, AllDependentVariables and Variables gives the same results:
In[11]:= |
Out[11]= |
Use AllDependentVariables to define a simple function to compute the equations of motion for a given Hamiltonian:
In[12]:= |
Use HamiltonianEqns with the Hamiltonian for the spherical pendulum:
In[13]:= |
In[14]:= |
Out[14]= |
Use HamiltonianEqns with the Hamiltonian for the PUMA-Like Robot:
In[15]:= |
In[16]:= |
Out[16]= |
Use AllDependentVariables with the resource function SymbolToSubscript:
In[17]:= |
In[18]:= |
Out[18]= |
Use AllDependentVariables with the resource functions FormalizeSymbols and SolutionRulesToFunctions:
In[19]:= |
In[20]:= |
Out[20]= |
In[21]:= |
Out[21]= |
Use AllDependentVariables with the resource function EulerEquations to compute the corresponding Euler-Lagrange equations of motion for the double pendulum:
In[22]:= |
In[23]:= |
Out[23]= |
AllDependentVariables don't recognize curried functions as dependent variables:
In[24]:= |
Out[24]= |
AllDependentVariables looks inside nested functions:
In[25]:= |
Out[25]= |
In[26]:= |
Out[26]= |
AllDependentVariables threads composite functions to obtain the dependent variables:
In[27]:= |
Out[27]= |
In[28]:= |
Out[28]= |
Wolfram Language 13.0 (December 2021) or above
This work is licensed under a Creative Commons Attribution 4.0 International License